
 www.keysight.com/find/labber          Page 1 

 

 

 

  

 
 
 
 
 
 
 

 
USER MANUAL 
  
 

 



www.keysight.com/find/labber          Page 2 

Table of Contents 
1. Introduction ........................................................................................................................................... 6 

2.1. Installation - Microsoft Windows ............................................................................................. 7 

2.2. Installation - Mac OS X ................................................................................................................ 8 

2.3. Installation - Linux ....................................................................................................................... 9 

2.4. VISA distribution .......................................................................................................................... 9 

2.5. Network and firewall settings ................................................................................................... 9 

2.6. Program folders ............................................................................................................................. 9 

3. Instrument Server .............................................................................................................................. 11 

3.1. Program startup ........................................................................................................................... 11 

3.2. Server window............................................................................................................................. 12 

3.3. Adding instruments ................................................................................................................... 12 

3.4. Configuring instruments .......................................................................................................... 13 

3.5. Instruments with vector-valued quantities ......................................................................... 15 

3.6. Keeping track of open client connections ............................................................................ 15 

3.7. Troubleshooting - Timing statistics ....................................................................................... 16 

3.8. Troubleshooting - Instrument and Network logs ............................................................... 16 

4. Controller ............................................................................................................................................. 17 

4.1. Controller operation .................................................................................................................... 17 

4.2. Improving controller performance ......................................................................................... 18 

5. Scheduler .............................................................................................................................................. 20 

5.1. Scheduling measurements ....................................................................................................... 20 

5.2. Scheduler settings ...................................................................................................................... 21 

6. Measurement program ..................................................................................................................... 23 

6.1. Measurement configuration ..................................................................................................... 23 

6.2. Adding channels ......................................................................................................................... 24 

6.3. Sending and retrieving values from instruments .............................................................. 26 

6.4. Defining step sequences ............................................................................................................ 26 

6.5. Log channels ................................................................................................................................ 31 

6.6. Timing ........................................................................................................................................... 32 

6.7. Log name, Project and User tags, Comments ....................................................................... 32 



www.keysight.com/find/labber          Page 3 

6.8. Tags ................................................................................................................................................ 33 

6.9. Starting a measurement ........................................................................................................... 33 

6.10. Signal connections ................................................................................................................... 36 

6.11. Hardware timing and synchronization ............................................................................... 39 

6.12. File locks ..................................................................................................................................... 41 

6.13. Measurement settings ............................................................................................................. 42 

6.14. Comparing Measurement configurations ........................................................................... 42 

7.1. Optimizer operation .................................................................................................................... 43 

7.2. Optimizer settings ....................................................................................................................... 45 

7.3. Custom optimizers ...................................................................................................................... 46 

8. Log Browser ......................................................................................................................................... 50 

8.1. Database ......................................................................................................................................... 50 

8.2. Log browser dialog ..................................................................................................................... 50 

9. Log Viewer ........................................................................................................................................... 54 

9.1. Plot config ..................................................................................................................................... 54 

9.2. Entry list ........................................................................................................................................ 58 

9.3. Tool bar .......................................................................................................................................... 58 

9.4. Multi-panel graph mode ........................................................................................................... 59 

9.5. Image mode .................................................................................................................................. 60 

9.6. Views ............................................................................................................................................. 62 

9.7. Exporting data ............................................................................................................................. 62 

10. Preferences ........................................................................................................................................ 66 

10.1. Folders .......................................................................................................................................... 66 

10.2. Server ........................................................................................................................................... 67 

10.3. Measurement ............................................................................................................................. 69 

10.4. Log Viewer .................................................................................................................................. 70 

10.5. Logger ........................................................................................................................................... 71 

10.6. Advanced .................................................................................................................................... 71 

11. Scripting .............................................................................................................................................. 73 

11.1. Console options ........................................................................................................................... 73 

11.2. Scripting using Python ............................................................................................................. 75 



www.keysight.com/find/labber          Page 4 

12. Instrument drivers ........................................................................................................................... 76 

12.1. Driver definition files ................................................................................................................ 76 

12.2. Quantities .................................................................................................................................... 84 

12.3. Custom drivers - Python code ................................................................................................ 87 

12.4. Subclassing the VISA driver ................................................................................................... 97 

12.5. Support for sweeping.............................................................................................................. 100 

12.6. Controller drivers .................................................................................................................... 102 

12.7. Hardware arming and triggering ........................................................................................ 103 

12.8. Hardware looping .................................................................................................................... 103 

12.9. Python distribution ................................................................................................................. 104 

Appendix - Python API ....................................................................................................................... 108 

A1. Installation ...................................................................................................................................... 109 

A1.1. Requirements ........................................................................................................................... 109 

A1.2. Testing the API ....................................................................................................................... 109 

A1.3. Upgrading from earlier versions ........................................................................................ 109 

A2. Instrument server ......................................................................................................................... 110 

A2.1. Labber client ............................................................................................................................ 110 

A2.2. Scheduling measurements .................................................................................................. 110 

A2.3. Connecting to instruments .................................................................................................. 111 

A2.4. Blocking vs. non-blocking clients ..................................................................................... 111 

A2.5. Function definitions .............................................................................................................. 114 

A2.6. Class definitions ..................................................................................................................... 115 

A3. Log files ............................................................................................................................................ 127 

A3.1. Reading data from Labber .................................................................................................... 127 

A3.2. Creating Labber log files ....................................................................................................... 128 

A3.3. Function definitions .............................................................................................................. 129 

A3.4. LogFile class ............................................................................................................................ 132 

A4. Script tools ...................................................................................................................................... 140 

A4.1. Initialization ............................................................................................................................ 140 

A4.2. Example ................................................................................................................................... 140 

A4.3. Function definitions .............................................................................................................. 141 



www.keysight.com/find/labber          Page 5 

A4.4. MeasurementObject class .................................................................................................... 142 

A5. Configurations ............................................................................................................................... 145 

A5.1. Example .................................................................................................................................... 145 

A5.2. Scenario class ......................................................................................................................... 148 

A5.3. Scenario module ..................................................................................................................... 155 

A5.4. Instrument module ................................................................................................................ 158 

A5.5. Step module ............................................................................................................................. 161 

A5.6. Lookup module ....................................................................................................................... 166 

 

 

  



www.keysight.com/find/labber          Page 6 

1. Introduction 
The software package consists of three separate programs. The Instrument Server handles 

the communication with the instruments, the Measurement program allows instrument 

values to be controlled and measured in used-defined sequences, while the Log Browser is 

used to organize and analyze the acquired data. The relation between the parts is 

visualized in Fig. Overview. 

Fig 1.1. Overview and structure of the components in the Labber software package. 

In a typical experimental setup, the Instrument Server keeps track of and communicates 

with all the instruments and equipment available in the setup. The communication can be 

over GPIB, serial, USB, TCPIP, or any other interface. During an experiment, 

the Measurement program will connect to an Instrument Server to output values to one 

specific instrument, or to read data from another one. Note that 

the Measurement program only talks to the Instrument Server, and not directly with the 

instruments. This modular approach allows the same generic procedure to be used for 

setting/reading values, regardless of the instrument type or the communication interface. 

The Measurement program saves the experimental configuration, the instrument settings 

and the acquired data into a central log database. The Log Browser provides a fast and 

efficient method for browsing, visualizing and organizing the measured data. Finally, 

the Log Viewer provides functionality for data analysis and for generating high-quality 

plots and figures. 



www.keysight.com/find/labber          Page 7 

In addition to the Instrument Server, Measurement and Log Browser programs, there is a 

Python API which allows all functionality to be accessed programmatically for scripting 

purposes or for writing custom applications. 

2. Installation 
2.1. Installation - Microsoft Windows 
The setup file will install Labber to the default Microsoft Windows installation directory, 

as well as create folders for storing data and local driver files in the user’s home directory. 

The default directories for local files can be set in the Preferences window, see 

Section PrefsFolder). 

After installation, the Instrument Server, Log Browser and Measurement programs can be 

started by clicking the corresponding file from the Windows start menu. Note that the Log 

Browser and Measurement programs can be opened from within the Instrument Server, so it 

is usually sufficient to start just the server program. 

2.1.1. Microsoft Windows - Troubleshooting 

Depending on security settings, some virus scanners may prohibit Labber from being 

installed or run on you computer. If you’re experiencing difficulties installing or running 

the program, try to temporarily disable the virus scanner. 

Some Microsoft Windows distributions lack a few support files needed by the program to 

run correctly. If the program won’t start, download and install the redistributable support 

files for Microsoft Visual C++ from http://www.microsoft.com/en-

us/download/details.aspx?id=26368 . Click on “Download” and select the file vcredist_x86.exe . 

2.1.2. Microsoft Windows - Defender SmartScreen warnings 

On certain Windows distributions, a dialog may pop up when installing Labber stating that 

the applications is unrecognized and hasn’t been screened by Microsoft. To install Labber, 

you need to override the dialog by clicking on “More info”, and then click on the “Run 

anyway”-button. 



www.keysight.com/find/labber          Page 8 

2.2. Installation - Mac OS X 
On Macintosh OS X, open up the installer disk image (.dmg-file) and drag the Labber folder 

to the Applications folder. The Labber folder contains the Instrument Server, Log 

Browser and Measurement applications, as well as driver files and a few example scripts. To 

start one of the programs, double-click the corresponding app file. 

If the program fail to open due to OS X’s restrictions to only allow apps from the Apple 

App store, open the Mac’s System Preferences window, select Security & Privacy, go to 

the “General” pane and set “Allow apps downloaded from” to “Anywhere”. If you don’t want to 

lift the restrictions completely, the settings in Security & Privacy can be set to “Mac App 

Store and identified developers”. In this case, the user needs to open each of the Labber apps 

once by right-clicking the app icon, holding down the alt/option or the control key on the 

keyboard, then clicking open. This will instruct OS X that these apps are allowed to run. 

The operation needs to be performed once for all three apps, to make sure that the apps 

will be able to call each other. 

2.2.1. MacOS 10.15 Catalina and newer 

Starting with MacOS 10.15 Catalina, Apple removed the option to allow installation of 

apps from unregistered software developers. We are currently in the process of getting 

approval from Apple for Labber, but in the meantime, it is still possible to run Labber by 

overriding the settings for each of the subcomponents used by the software. When 

opening the Instrument server the first time, MacOS will show a dialog informing that the 

app “cannot be opened because the developer cannot be verified”. When the dialog shows up, 

leave it open and launch the MacOS System Preferences window, select Security & Privacy, 

and go to the “General” pane. Next, click “Cancel” in the warning dialog. At this point, a text 

message and a “Open Anyway” button will pop up in the Security & Privacy window, which 

can be used to override the warning. 

Next, there will be a similar warning for opening Python, and a similar technique 

(click “Cancel”, then click “Open Anyway” in the Preferences window) can be used to 

override the warning. Unfortunately, the procedure needs to be repeated for each of the 

Python packages used by Labber (approximately 10-15 in total), and you may need to quit 

and restart the Instrument server a few times to make sure all packages are accepted. Once 

all packages have been accepted, Labber will start as usual when launching the application 

subsequently. 



www.keysight.com/find/labber          Page 9 

2.3. Installation - Linux 
On Linux, open up the debian package file (.deb-file) to install Labber. This will 

install Labber to the folder /usr/share/Labber, as well as create folders for storing data and 

local driver files in the user’s home directory. The default directories for local files can be 

set in the Preferences window, see Section PrefsFolder). 

After installation, the Instrument Server, Log Browser and Measurement programs can be 

started by opening a terminal and typing labber-instrumentserver , labber-

logbrowser  or labber-measurement  at the prompt. If you are running a desktop manager, 

there will also be launcher icon available for the three programs. Note that the Log 

Browser and Measurement programs can be opened from within the Instrument Server, so it 

is usually sufficient to start just the server program. 

2.4. VISA distribution 
To communicate with instruments over the VISA protocol, a VISA distribution needs to be 

installed on the computer. A VISA distribution can be downloaded from National 

Instruments, see http://www.ni.com/visa/ . 

2.5. Network and firewall settings 
The Instrument Server, Log Browser and Measurement programs communicate using TCP/IP, 

which makes it possible to perform measurements involving instruments connected to 

different computers, even on different networks. The default settings assign TCP port 

9406 for server/client communication and TCP port 9407 for sending internal 

notifications between the program parts. If you want to perform measurements in a multi-

computer network and firewall is enabled on your system, the firewall must be configured 

to allow traffic on these ports. The port numbers can be changed in case they are occupied 

on your system (see Chapter Prefs). 

2.6. Program folders 
In addition to the folders with executables the program uses a few extra folder locations, 

as listed below. 



www.keysight.com/find/labber          Page 10 

2.6.1. Data folder 

The program needs a folder for saving the measured data. By default, this folder is set 

to “<User home directory>/Labber/Data”, but it can be changed at any time from 

the Preferences window (see Section PrefsFolder). 

2.6.2. Instrument drivers 

The program has two separate folders for storing instrument drivers, one main folder 

(called “Instrument drivers” in the Preferences window) and one local folder (called “Local 

drivers” in the Preferences). The main driver folder resides in the same folder location as the 

executables, and should not be altered in a typical setup. The local driver folder is set 

to “<User home directory>/Labber/Drivers”, but its location can be changed in 

the Preferences. 

When creating a new instrument driver, the driver definition file should always be placed 

in the “Local drivers” folder. This allows the user’s own drivers to be kept separately from 

the drivers provided with Labber, and it also prevents drivers written by users from being 

deleted when updating the Labber program to a newer version. See Section Drivers for 

more information on creating instrument drivers. 

2.6.3. Scripting 

The Python API that contains scripting helper functions are located in the Script folder of 

the main program directory. See Section scriptPython for more information on scripting. 

  



www.keysight.com/find/labber          Page 11 

3. Instrument Server 
3.1. Program startup 
When starting the Instrument Server, the program will create a tray icon and a tray menu 

for controlling the server, showing preferences and launching the Measurement and 

the Log Browser programs (see Fig. 3.1). The tray menu also shows the status of the 

network server. Whenever the network server is running, clients are allowed to connect 

to the server to communicate with the instruments. Note that the network server keeps 

running in the background even after the server window has been closed. To stop the 

server, either select “Stop Network Server” from the tray menu or quit the server by 

selecting the “Quit Server” menu item. 

 

Fig. 3.1 System tray menu for the Instrument Server program. In addition to controlling the 

server settings, the menu provides options for starting the Measurement and the Log 

Browser programs. 

 



www.keysight.com/find/labber          Page 12 

 

Fig. 3.2 The main Instrument Server window. 

 

3.2. Server window 
The main server window contains a list with all instruments defined in the setup (see 

Fig. Server). The standard procedure of Instrument Server is to populate this list with the 

instruments that can be controlled by the computer. Once the instrument have been 

defined and properly configured, they are ready to be used by the Measurement program. 

3.3. Adding instruments 
To add an instrument, click the “Add” button or select “Edit/Add…” from the pull-down 

menu. The program will scan the global and local Instrument driver-folders (defined in the 

preferences, see Section PrefsFolder), and bring up a list with available drivers. Select the 

instrument type to be added and define the communication interface and address. The 

instrument can also be given a unique name, which is convenient if many instruments of 

the same type are present in the setup. 

https://labber.org/online-doc/html/Server.html#fig-server


www.keysight.com/find/labber          Page 13 

3.4. Configuring instruments 
Once an instrumented has been added to the server, it needs to be configured to perform 

the desired operation. Select the instrument to be configured in the instrument list and 

click the “Config” button (or just double-click the instrument name). This will bring up a 

window with instrument configuration settings (see Fig. 3.3 for an example of a driver for 

a DC source). The window contains a list with (at least) two sections with controls: 

 

Fig. 3.3 Driver configuration window for a current source. In addition to controls defining the 

instrument configuration, there are buttons for sending and retrieving the configuration from the 

hardware. Some quantities, like “Voltage” in the figure, have additional controls for defining 

sweep rates. 

 

Communication: 

This section contains communication controls that define the interface type and 

address. In addition, if the driver support multiple instrument models with different 

installed options, the model type and available options will be shown here. 

Settings: 

This section (and all other sections, if present) contain instrument-specific 

configuration settings. 

The toolbar at the top of the window provide the following buttons and controls for 

communicating with the hardware: 



www.keysight.com/find/labber          Page 14 

Set cfg: 

Send the configuration defined in the dialog to the instrument hardware. This 

requires the communication interface and address to be properly defined. 

Get cfg: 

Read the configuration from the instrument hardware and update the driver 

dialog. 

At startup: 

This controls defines the operation to be performed directly after the instrument 

driver has started. The default is “Set config”, which will configure the instrument 

hardware according to the settings in the driver dialog. Other options are “Get 

config”, which will read the configuration from the instrument hardware and update 

the Labber driver configuration, or “Do nothing”, in which case neither the hardware 

configuration nor the Labber driver configuration are updated. 

Start: 

When clicking this button, the Instrument Server will connect to the instrument and 

perform the operation defined by the “At startup”-control. After successfully 

performing these tasks, the instrument will be in the Active state (marked by an 

indicator in the lower-right hand corner of the driver window and in the Instrument 

server window). Note that once the driver is active, any subsequent changes made 

to any of the controls will directly be sent to the instrument hardware. If an 

instrument is controlled by a client, it is no longer possible to change the 

configuration from the driver window (all controls will be grayed out). Values can 

still be sent to or read from the instrument, but only by using the “Set Value” or “Get 

Value” buttons in the server window, or if a client asks a value to be 

measured/updated. The “grayed out”-behavior can also be turned on by default 

from the “Server” section of the Preferences dialog (see Section PrefsServer). 

Stop: 

This will take the instrument driver out of the Active state, stop any eventual 

instrument operation and close the communication interface. 

https://labber.org/online-doc/html/Preferences.html#sec-prefsserver


www.keysight.com/find/labber          Page 15 

3.5. Instruments with vector-valued quantities 
Some instruments like oscilloscopes, network analyzers and digitizers measure not only 

scalar values but also traces containing vector values. Drivers for such instruments 

contain a few extra controls (see Fig. 3.4. for an example). If the “Show trace” checkbox is 

enabled, the user can acquire and plot the current instrument data by selecting a trace to 

show and clicking the “Get trace” button. The “Save trace…” button allows the trace 

currently visible to be saved to the log database. Note that instrument driver must be 

started and in the active state to acquire and show data traces. 

 

Fig. 3.4. Example of an instrument driver that returns vector-valued data. 

 

3.6. Keeping track of open client connections 
Once all instruments are defined, clients can connect to the server to control and measure 

instruments quantities. The server-client model of Labber is very flexible: 

The Measurement program can setup experiments that involve instruments connected to 

different servers on different computers, and a single server can handle simultaneous calls 

from multiple measurement programs. This flexibility also brings potential complications, 

like situations where two clients simultaneously try to access the same instrument. To 

avoid these complications, the server provides a way for clients to exclusively lock an 

instrument, thereby preventing other clients from accessing it. The locks are described in 

more detail in Section MeasDriverCfg. 



www.keysight.com/find/labber          Page 16 

To keep track of open connections and locked instruments, the Instrument Server program 

features a dialog that lists open client connections and the instruments those clients are 

using. The dialog is shown by selecting “Server/Show Open Connections…” from the menu 

bar. 

3.7. Troubleshooting - Timing statistics 
The Instrument Server program keeps track of the time each instrument driver need to 

perform operations, which can be useful information when benchmarking instrument 

communication. To turn on the timing statistics, select “Tools/Show Timing Statistics” from 

the Instrument Server menu bar. This will add two columns to the main Instrument 

Server window, one displaying the total number of calls performed to a specific instrument 

quantity, and one displaying average the time per call. The timing statistics can be reset 

for all instrument by selecting “Tools/Reset Statistics”, or for individual quantities by right-

clicking the item and selecting “Reset Timing Statistics”. 

3.8. Troubleshooting - Instrument and Network logs 
The Instrument Server program keeps logs of recent activities, both for instrument and 

network communication. The log files are useful if problems arise with instrument 

communication or if clients have difficulties connecting to the server. To inspect the log 

files, select “Log/View Instrument Log” or “Log/View Network Log” from the Instrument 

Server menu bar. The log files provide dated entries with the data strings sent to or 

received from instruments or from clients. 

The amount of logging detail can be controlled in the preferences dialog (see 

Section PrefsServer); select “Debug” for the most detailed information. However, once the 

problems have been resolved and the instruments and networks are working as expected, 

it is recommended to reduce the logging detail level to minimize overhead. 

  



www.keysight.com/find/labber          Page 17 

4. Controller 
In addition to standard instruments, Labber also provides special controller instruments 

for implementing functionality such as PID controller loops. The controller instruments 

works by reading an input value from a separate instrument such as a thermometer, 

applying a controller logic to regulate temperature (for example), and then sending the 

controller output value to another instruments such as a heater. 

 

Fig. 4.1. The user interface for the PID Controller driver. 

 

4.1. Controller operation 
To use the controller functionality, start by adding a controller instrument to 

the Instrument server by clicking the Add Instrument-button in the Instrument 

server toolbar. Labber provides a built-in PID controller, and additional custom controllers 

can be created as described in Section ControllerDriver. In addition to the usual sections 

and settings specific to the particular driver, a controller driver also have a number of extra 

settings related to running the controller loop. An example of the built-in PID 

Controller driver dialog is shown in Fig. 4.1, with the controller settings seen in the right-

hand side of the figure. The dialog contains the following settings: 

 



www.keysight.com/find/labber          Page 18 

Enabled: 

If checked, the controller loop will run in the background and call the input/output 

instruments at a fixed interval set by the Period -setting. 

Period: 

Intended controller loop period, in seconds. 

Measured period: 

Actual controller period, which may be different than the set period depending on 

the time it takes to read/write the input/output values from/to the instruments. 

Input signal: 

Input signal for the optimizer. 

Input value: 

Current input value. 

Output signal: 

Output signal for the optimizer. 

Output value: 

Current output value. 

To set up the controller, first start the instrument driver by clicking the Start-button. Next, 

select the proper Input and Output signals from the pull-down controls. Finally, set the 

intended controller period, make sure that both the Input and Output instruments are 

running, and then press the Enabled checkbox to start the controller. The controller loop 

will now run in the background and call the input/output instruments at a fixed interval 

set by the Period -setting. 

4.2. Improving controller performance 
If the controller needs to run at a high repetition rate, set the Period  control to 0.0  to run 

the controller loop continuously without gaps. The actual controller loop period will not 

be zero due to the time it takes to read/write values from the instruments. 



www.keysight.com/find/labber          Page 19 

Note that the updating the user interface introduces a slightly delay, so for the fastest 

operation it is advised to run the controller with its dialog window closed. The measured 

controller loop period can be probed even if the controller window is closed by expanding 

the PID Controller/Controller settings  items in the main Instrument server dialog. 

  



www.keysight.com/find/labber          Page 20 

5. Scheduler 
The Labber Instrument server contains a scheduler that allows the user to define a queue of 

experiments to run, as well as functionality for repeating a specific measurement at fixed 

intervals, for example once per day. The scheduler automatically launches and executes 

the measurement program whenever an experiment is due. 

 

Fig. 5.1. The user interface for scheduling a measurement. 

 

5.1. Scheduling measurements 
Measurements can be scheduled from the user interface, or from the Python API. To 

schedule an experiment from the user interface, open the Instrument server program and 

select “Scheduler/Schedule Measurement” from the main pull-down menu. This will open a 

dialog (see Fig. 5.1) with the following settings: 

Path: 

Path to Labber measurement configuration to run, 

in .labber , .json  or .hdf5  format. 

Priority: 

Checkbox for setting priority in scheduling system. If a prioritized and non-

prioritized measurement are both ready for execution at a specific time, the 

prioritized one will run first. 



www.keysight.com/find/labber          Page 21 

Schedule time: 

Scheduled time for measurement to run. If the date is in the past, the measurement 

will execute as soon as the dialog is closed. 

Repeat periodically: 

If checked, the experiment will be repeated at a fixed interval. If unchecked, the 

measurement will run only once. 

Repeat period: 

Repeat interval, in hours. 

When closing the dialog, the measurement configuration will be added to the queue of 

experiments to execute. If there are no other experiments in the queue, and if 

the “Schedule time” is right now or in the past, the measurement will start as soon as the 

dialog is closed. 

To view a list of scheduled measurements from the user interface, 

select “Scheduler/Schedule Measurement” from the Instrument server pull-down menu. In 

addition to displaying the measurements currently scheduled in the queue, the dialog has 

an option to remove a scheduled measurements (Fig. 5.2). 

 

Fig. 5.2. The user interface for displaying the list of scheduled measurements. 

 

5.2. Scheduler settings 
By default, the scheduled experiments will run in a separate process from the one used by 

the main Measurement program. This allows a queued experiment to execute at the same 

time as one launched from the Measurement program. However, this may cause issues if 



www.keysight.com/find/labber          Page 22 

both experiments are trying to access the same resource, for example a specific 

instrument in the Instrument server. 

This can be avoided by unchecking the setting “Run queued experiments in separate 

process” under the section “Measurement/Advanced” in the Labber preferences. If 

unchecked, an experiment started from the Measurement user interface will not start 

immediately upon pressing Start in the dialog, but rather be added to the scheduler queue 

and execute when the other experiments in the queue have finished. 

Note that a restart of both the Instrument server and the Measurement program may be 

required for the changes to fully go into effect. 

  



www.keysight.com/find/labber          Page 23 

6. Measurement program 
The Measurement program allows instrument quantities to be measured as a function of 

other parameters. The program is highly flexible, allowing multi-dimensional sweeps 

involving any instrument quantity defined in the Instrument Server. The Measurement is 

started by from the system tray menu (“Show Measurement Editor”) or by 

selecting “Window/Show Measurement Editor” from the main Instrument Server window.  

 

Fig. 6.1. The main Measurement configuration window. 

 

6.1. Measurement configuration 
The main measurement configuration window is shown in Fig. 6.1. The left-hand panel 

contains a list with instrument quantities (or Channels) involved in the experiment, the 

top-right section defines the sequence of Channels to sweep, while the lower-right panel 

shows a list of channels to measure. Measurements are easily configured by 

dragging Channels between the lists. 



www.keysight.com/find/labber          Page 24 

6.2. Adding channels 
The first step for setting up a measurement is to define the Channels involved in the 

experiment. A Channel represents an instrument quantity on an Instrument Server, 

together with additional properties like name, unit, conversion factors and limits. The 

easiest way to define channels is to add instruments already present on an Instrument 

Server, which is done by clicking “Add Instruments from Server” in the 

main Measurement configuration window. This will bring up a dialog with options for 

connecting to an Instrument Server, and a list of instruments that can be added to the 

measurement. 

There is also an option for adding channels without having the corresponding instrument 

previously defined on a server. Choosing the “Edit/Add Instruments…” from the menu bar 

will bring up a dialog where the user can select which instrument to use and how to 

communicate with it. In this case, the user needs to specify both the communication 

protocol of the instrument as well as the server address, so that the new instrument can 

be created on the Instrument Server when starting the measurement. 

By default, the program will add channels for every quantity active in the instrument 

configuration. To minimize clutter and allowing an easy overview of the measurement 

setup, it’s advisable to remove channels that will not be controlled from an experiment. 

This is done by selecting a quantity and pressing the “Remove”-button below the list. 

Quantities can always be re-introduced later by clicking the “Add”-button. In addition, the 

value of any instrument quantity can by controlled by opening the Instrument 

driver configuration window (either by double-clicking the instrument name in 

the Channels list or by selecting an instrument and pressing “Show cfg…”). 

Note that the Instrument driver configuration window serves different purposes in 

the Measurement program and in the Instrument Server. In the Instrument Server, the 

instrument configuration dialog is used to directly control the hardware settings, meaning 

that any changes to the dialog will directly affect the state of the hardware. In contrast, in 

the Measurement program the dialog is used to define a configuration that will be used in a 

specific Measurement, but no changes are made to the hardware until the measurement is 

started. To avoid confusion, Instrument driver configuration windows have a different 

background color when opened within the Measurement program and in the Instrument 

Server. 



www.keysight.com/find/labber          Page 25 

 

Fig. 6.2. The Channel configuration window allows the user to define properties of the physical 

quantity measured by an instrument. 

 

Channels also contain properties for describing the physical quantity measured by an 

instrument. The properties are set in the Channel configuration window (see Fig. Channels), 

which is brought up by selecting a channel and clicking the “Edit…”-button. The dialog 

allows the user to set channel max/min limits, and to define conversion factors between 

the physical quantity investigated in the experiment and the quantity measured by the 

instrument. An example where such a conversion is useful is when current biasing a circuit 

by applying a voltage over a large resistor in series with the circuit. In this case, the 

physical quantity would be current (with units Ampere), while the instrument quantity 

would be voltage. The equations for converting between physical and instrument units are 

defined in the text box next to the Conversion factors-controls. 

6.2.1. Instrument configuration - locks 

After the channels have been added to the Measurement configuration, the 

corresponding Instrument driver configuration window can be shown by double-clicking 

the instrument name or selecting the instrument and clicking “Show Config…”. In addition 

to the settings listed when describing the Instrument Server (see Section ConfigInstr), the 

dialog contain contains an extra checkbox (“Lock instrument on server”, under the 

section “Communication”) for determining whether the instrument will be used exclusively 

by the current experiment. If the control is checked (default behavior), no other clients 

can connect to or change the instrument values during the duration of the measurement. 

See Section OpenClients for more information about locks. 

https://labber.org/online-doc/html/Measurement.html#fig-channels


www.keysight.com/find/labber          Page 26 

6.3. Sending and retrieving values from instruments 
The “Set Value…”- and “Get Value”-buttons below the channel list allow the user to quickly 

set or retrieve the current instrument value. Note that the “Set value…”-operation will 

immediately send the new value to the instrument hardware. 

Instrument values can also be controlled from the Instrument driver configuration window, 

which is opened by double-clicking the instrument name or selecting the instrument and 

clicking “Show Config…”. However, in contrast to the “Set/Get Value”-buttons, changing the 

value of a control in the Instrument driver window will only update the local value kept in 

the Labber configuration. The actual instrument hardware is not updated until the user 

clicks “Set Cfg” in the driver window, or when the measurement is started (provided that 

the “At Measurement Start”-option in the driver window is set to “Set config”). 

6.4. Defining step sequences 
A measurement consists of a list of Step sequences that output values to instruments in a 

specified order. To define a Step sequence, drag the channel to sweep from the Channels list 

on the left to the Step sequence list on the top right of the main Measurement configuration 

window. This will bring up the Basic settings-dialog for defining the range of values to 

output. Once defined, the step items can be re-ordered by dragging the entries within the 

list. 

6.4.1. Step setup - Basic settings 

The basic settings dialog allows the user to define single-point step values or basic ranges, 

either by defining start-stop or center-span values. The step size is specified either by 

setting a fixed step size, or by defining the total number of points in the step range, see 

Fig. 6.3. When defining the number of points in the range, the user can set the 

interpolation to be linear or logarithmic. Note that logarithmic interpolation only works if 

all values in the step range are positive. 



www.keysight.com/find/labber          Page 27 

 

Fig. 6.3. Basic dialog for defining step sequences. 

 

If the channel is sweepable or if there are scaling factors defined between 

physical/instrument units, the dialog contains a few extra controls as described in 

Section AdvancedStepSetup. 

6.4.2. Step setup - Advanced settings 

The advanced settings dialog contains a few extra controls to provide better control of the 

step parameters. First, there is a list with step ranges, allowing multiple ranges to be 

defined with different step sizes (see Fig. 6.3 for an example). Use 

the “Add…”, “Edit…” and “Remove”-buttons to add/edit ranges, and drag the entries in the 

list to make the values appear in the right order. The graph in the upper-right corner of the 

dialog shows a visual representation of the step output values, with the step number on 

the y-axis and the corresponding output value on the x-axis. 



www.keysight.com/find/labber          Page 28 

 

Fig. 6.4. Advanced dialog for defining step sequences. 

In addition, the upper-left part of the dialog contain the following controls for fine-tuning 

the step sequence: 

Step units: 

The control sets whether the step values are given in instrument or physical units 

of the channel (see Section Channels). The step values are updated to reflect the 

unit settings whenever the control is updated. The control is only visible if 

physical/instrument unit conversion factors have been defined in 

the Channel setup dialog. 

Wait after each step: 

Time to wait after a step value has changed. Note that the actual time to wait will 

be the maximum of this time and the delay time between step and measure as set in 

the main Measurement configuration window (see Section Timing). 



www.keysight.com/find/labber          Page 29 

Alternate step direction: 

If checked, the execution of the step sequence in multi-dimensional experiments 

will alternate between forward and reversed direction, eliminating the need to go 

back to the first step point between loops. This feature is also useful when looking 

for hysteresis when sweeping a field up and down. 

After last step: 

Defines the operation to perform after the step sequence has completed. Possible 

values are “Goto first point”, “Stay at final” or “Goto specified value”. Default behavior 

is “Goto first point”. 

6.4.3. Step setup - Sweep mode 

If the step channel is sweepable, the sweep mode controls provide a few extra user 

interface elements for controlling the sweep settings. For more information on how to 

write drivers that supports sweeping, see Section SweepDriver. 

Sweep mode: 

The program supports three different sweep modes: 

Sweep mode - Off: 

Sweep mode is off, step values are set directly. 

Sweep mode - Between points: 

The instrument is swept between step points, but the output is held constant while 

acquiring data for the log channels. 

Sweep mode - Continuous: 

In this mode, the instrument is configured to continuously sweep from the first to 

the last value in the step list. The log channels are being measured at the points 

defined in the step list, but the program will not stop sweeping the output channel 

while acquiring data for the log channels. 

 



www.keysight.com/find/labber          Page 30 

Rate: 

Sweep rate, in units . The sweep rate is also shown in units . Note that the 

sweep rate in this dialog will overwrite the sweep rate defined in the configuration 

window of the corresponding instrument driver. 

Time between points: 

If sweep mode is Continuous, this text shows the typical interval between 

measurement points for the given sweep rate and step list. 

Use different sweep rate outside loops: 

If checked, a numerical control will appear below the checkbox, allowing the user 

to define a separate sweep rate for sweeping to the init/final values and for 

sweeping between loops. If unchecked, the program will use the common sweep 

rate defined in the control above when setting init/final/between loop values. 

6.4.4. Step setup - Channel relations 

One useful feature of the Advanced step configuration is the ability to define relations 

between channels. For instance, imagine a situation where we want to sweep two 

voltages V1 and V2 in a way that V2 is always exactly 1.5 V higher than V1. To implement 

this, we first define the step sequence for V1 as usual. Next, we create a step configuration 

for V2 and switch to the advanced settings. Clicking the “Enable channel relations” will 

allow us to enter an equation relating the output of V2 to other channels. The values of 

other channels are accessible through parameters, shown in the list on the right-hand side 

of the dialog. The “Add…”, “Edit…” and “Remove”-buttons below the parameter list are used 

to edit the parameter names. The parameter "x"  refers to the step values as defined in 

the step list in the upper part of the dialog. 

For this particular example, we would enter p1 + 1.5  in the equation box for 

channel V2 (assuming that the parameter p1  is linked to channel V1). The equation string 

can involve basic mathematical functions like cos(x) , sin(x) , sqrt(x) , exp(x) , etc… Also, 

note that the raised operator ( ) is given by two multiplication signs ( ** ). 

Before starting a measurement, it is good practice to check that the relation equation 

produces the intended output. By default, the graph in the top-right corner of the dialog 



www.keysight.com/find/labber          Page 31 

shows the step values generated by the step list, but it can also be configured to visualize 

the output of the relations as a function of any other channel in the measurement. The 

graph contents are set by the “Plot to show”-control to the left of the figure. 

6.5. Log channels 
The Log channels list defines the channels to measure at each step point. To add log 

channels, simply drag a channel entry from the main Channels list on the left to the Log 

channels list. Note that it is not possible to add the same channel to both the step and the 

log list. 

If the checkbox “Log in parallel” is checked, the program will try to measure all channels 

simultaneously at each step point. If the “Log in parallel” is unchecked, the channels will 

instead be measured sequentially, starting with the top-most one in the list. The log 

channels can be reordered by dragging the items within the list. 

6.5.1. Log channels limits 

Each log channel has an associated range limit, which is defined by double-clicking the log 

channel or clicking the “Edit…” button below the log channel list. If the measured value 

falls outside the defined limits during a measurement, one of the following actions will be 

taken: 

Nothing 

No action is taken, the measurement continues as usual. 

Continue to next step item 

The measurement program stops execution of the innermost step sequence, and 

continues to the next item of the second step sequence. 

Stop, stay at current values 

Stop the measurement, hold all instruments at the current values. 

Stop, go to init/final configuration 

Stop the measurement, go to final values as defined in the Advanced step setup 

dialog (see Section AdvancedStepSetup). The default is to go to the initial values. 



www.keysight.com/find/labber          Page 32 

 

Fig. 6.5. Limit options for log channels. 

 

6.6. Timing 
The Timing section in the lower-right corner of the main Measurement configuration 

window allows the user to set a time to wait between outputting new values to the step 

channels and measuring the log channels. In addition, the section gives an estimate for 

how long time it’ll take to run the measurement. The estimate is based on the duration of 

the previous experiment; the expected time needed per point can be adjusted manually, if 

required. 

6.7. Log name, Project and User tags, Comments 
When running a measurement, both the measurement configuration and the obtained 

data are saved into a single file in the database folder (see Section LogDatabase for a 

discussion of the folder hierarchy and the structure of the log database). The log file name 

is defined by the Log name control in the toolbar in the upper-right part of the 

main Measurement configuration window. When starting a measurement with a file name 

that already exists, a dialog will pop up presenting the user with the following options: 

Create New 

The new measurement will be save into a new log file, with a modified file name 

(“_2”, “_3”, “_4”, etc, will be appended to the log name). 

Append Data 

The new measurement will append new data to the old log. This option is only 

available if the measurement is one-dimensional (that is, if only one of the step 

sequences contains more than a single value), and if the previously existing log has 

the same structure as the new one. 



www.keysight.com/find/labber          Page 33 

Overwrite 

The old log is deleted before starting the new measurement. 

The comment field allows experiment-specific descriptions to be added to the 

measurement configuration file. Note that there is no need to type any information 

related to instrument settings here; all the instrument configurations are automatically 

saved into the configuration file. 

6.8. Tags 
The Project, User and Tags controls provide ways of keeping the log database organized. 

The controls are shown by clicking the “Show Tags”-button in the dialog toolbar. 

The Project field supports a hierarchy structure, with subprojects separated by a forward 

slash (“/”). For example, entering "Sample2/DeviceA/IV-curves"  will put the log in the 

subproject "IV-curves"  of subproject "DeviceA" , which is located in the project "Sample2" . 

The Project tag can be enetred directly into the text field, or by clicking the folder icon next 

to the control to bring up a hierarchy tree with all projects defined in the database. 

The User name can be entered directly into the text field, or by clicking the user icon to 

bring up a list with users already present in the log database. A log file can only belong to a 

single Project and User. 

Contrary to the Project and User fields, a log can contain multiple Tags. The Tags are 

added/removed by clicking the plus/minus signs next to the tag list. Similar to 

the Project field, the Tags support a hierarchy tree of tags and subtags. 

6.9. Starting a measurement 
Once the step sequences, log channels and the log name have been defined, the 

measurement is ready for execution. When clicking the “Start measurement”-button in the 

upper-right corner of the Measurement dialog, the program will perform the following 

sequence: 

1. The program will go through all step sequences to make sure that all of the step values 

are valid and within the min/max ranges allowed by the corresponding channels. 

2. Next, connections will be established to the Instruments Servers of all instruments in 

the Channels list. 



www.keysight.com/find/labber          Page 34 

3. For every instrument, the program will either set or read the current the hardware 

configuration, depending on the value of the “At Measurement Start”-control of each 

instrument driver (see Section AtStartup). The recommended setting is “Set cfg”, since 

this will assure that instrument is hardware in the same state every time the 

measurement is performed. Note that the “At Measurement Start”-operation will be 

performed for all instruments defined in the measurement window, even for channels 

that aren’t used in step sequences or as log channels. 

4. The program will perform the measurement by stepping through all the values defined 

in the Step sequences. The order of the step sequences defines the order in which the 

values are outputted, starting with the values in the top-most step sequence. For 

example, consider a situation with two defined step sequences: one for “Channel 

1” with values {1,2,3} and one for “Channel 2” with values {10,20}. There are a total of 

3*2 = 6 step points. If “Channel 1” occurs before “Channel 2” in the sequence list, the 

program will set the values in the following order: 

Step No. Channel 1 Channel 2 

1 1 10 

2 2 10 

3 3 10 

4 1 20 

5 2 20 

6 3 20 

 

5. On the other hand, if “Channel 2” occurs before “Channel 1”, the step order will be: 



www.keysight.com/find/labber          Page 35 

Step No. Channel 1 Channel 2 

1 1 10 

2 1 20 

3 2 10 

4 2 20 

5 3 10 

6 3 20 

6. The values of all log channels are measured at each step point. 

7. When the measurement is finished, the program will close the connections to all 

instruments and all Instrument Servers and return to the 

main Measurement configuration window. The new log will be available for viewing in 

the Log Browser window (see Chapter BrowserDlg) 

Figure 6.6 depicts the dialog shown when a measurement is running. The list on the left 

contains a list of the step and log channels defined in the measurement, together with 

current values and progress indicators (for step channels). The green light indicate that a 

value is currently being sent/received from an instrument. The graph on the right visualize 

the measurement progress for the step channel selected in the channel list on the left. 

Alternatively, if a log channel is selected, the graph will show the currently measured trace 

for that channel. 



www.keysight.com/find/labber          Page 36 

 

Fig. 6.6. The Measurement window. 

 

The tool bar at the top of the dialog contains buttons for showing the measured data in 

real-time, either as a line plot or as an image map. In addition, there are buttons for 

skipping traces, pausing and stopping the experiment. The Skip button will stop execution 

of the innermost step sequence, save the current trace, and then continue to the next step 

item. 

6.10. Signal connections 
Many experiments involve sending or reading waveforms from instruments like arbitrary 

waveform generators, digitizers or digital oscilloscopes. For example, imagine an 

experiment where we want to control the amplitude of a sine signal outputted using an 

arbitrary waveform generator. The process can be divided into two tasks: The first task is 

to numerically calculate a waveform with the correct amplitude, the second task is to send 

that waveform to the output of the arbitrary waveform generator. Another example 

would be to measure a waveform with an oscilloscope, and then apply some function to 

extract the signal’s amplitude or frequency, which would allow us to record only a single 

or a few values characterizing the signal instead of saving the whole waveform to the log 

file. 



www.keysight.com/find/labber          Page 37 

 

Fig. 6.7. A Measurement configuration with signal connections for pulse generation and signal 

demodulation. 

 

The Measurement program provides Signal Connections for managing situations like this. 

The idea is to separate the signal generation or signal analyzing from the instrument 

communication, to make it possible to develop generic Signal Generator or Signal 

Analyzer drivers for creating or analyzing waveforms, which operate independently of the 

specific hardware that is used to output or measure the waveforms. In this way, the 

waveform generation/analyzing functions can be used interchangeably with instruments 

from different vendors. For more information on how to create your own Signal 

Generator or Signal Analyzer drivers, see Section DriverINI. 

The Signal Connections button in the toolbar of the main Measurement configuration 

window is used to show/hide a list of signal connections defined in the current setup. The 

button is only enabled when the setup contains instruments that allow waveform 

generation/analyzing. The Signal Connections control contains a list with all the instrument 

quantities that can output or analyze a waveform. To make a connection, double-click one 

of the outputs and select the source signal from the dialog that pops up, or simply drag a 



www.keysight.com/find/labber          Page 38 

channel that represents a signal source from the main Channels list onto the correct 

output in the Signal Connections list. Figure 6.7 shows an example of 

a Measurement configuration with a few signal connections. 

Note that signal connections are also possible for scalar-valued channels. To make a signal 

connection between two scalar-valued channels, click the “Show scalar-valued signals”-

checkbox below the signal connection list. Scalar-valued channels are listed in italics in the 

signal connection list, to distinguish them from the waveform signal connections. 

As mentioned earlier in this section, two types of signal connections can be made: The first 

type is when a Signal Generator driver is used to generate waveforms that will be sent to 

the output of an arbitrary waveform generator, for example. The second type of 

connection is when a waveform that is acquired using an instrument such as a digitizer or 

an oscilloscope is sent to a Signal Analyzer driver. The example in Fig. 6.7 illustrates both 

examples: The signals generated by the “Pulse Generator” Signal Generator driver are 

configured to be sent to various output channels of a Tektronix Arbitrary Waveform 

Generator (labelled “AWG” in the figure), whereas the waveforms acquired by the “Acqiris 

U1084A Digitizer” will be sent to the of the “Signal demodulation” Signal Analyzer driver 

that will extract the amplitude of the waveform at a specific frequency. 

When running a Measurement that contains Signal connections, for each step in the step 

sequence the program will perform the following sequence: 

1. Update step values: Update the values of channels defined in the Step sequence. 

2. Generate and output signals: If present, calculate signals with Signal Generator drivers 

and send the resulting waveforms to the corresponding instruments outputs. 

3. Wait: Wait for the time specified in the Timing section in the lower-right corner of the 

main Measurement configuration window. 

4. Acquire and analyze signals: If present, measure instrument channels that acquire 

waveforms, and send the acquired waveforms to the corresponding Signal 

Analyzer drivers. 

5. Log results: Measure the channels specified in the Log channels list and save them to 

disk. If a Signal Analyzer driver is in use, the Log channels list is where the user defines 

what quantities to store in the log file. 

In the example of Fig. Signals, the step sequence will update a few parameters of the 

“Pulse Generator” Signal Generator driver. Once all parameters have been updated, the 

https://labber.org/online-doc/html/Measurement.html#fig-signals


www.keysight.com/find/labber          Page 39 

“Pulse Generator” driver will calculate new waveforms that will be sent to the “AWG” 

output channels. After that, the program will wait for 0.1 second to give the sample time 

to settle, before acquiring two waveforms (“Ch1 - Data” and “Ch2 - Data”) with the 

“Acqiris U1840A Digitizer”. The measured will waveforms will be sent to the “Signal 

demodulation” Signal Analyzer driver, which will analyze the waveforms and return the 

result in the channel named “Value”, which will be stored in the log file. 

When running an experiment that contains Signal connections, it is possible to look at the 

measured waveforms in real-time as they are being acquired and processed. In the 

window that is visible when an experiment is running, mark the channel to investigate in 

the step sequence list in the left-hand part of the dialog (see Fig. 6.8). 

 

Fig. 6.8. The measurement window during an experiment with signal connections, showing a 

measured waveform. 

 

6.11. Hardware timing and synchronization 
In standard operation mode, Labber handles instrument synchronization by waiting for an 

instrument to report that all step channels values have been outputted before reading the 

log channels. Since this requires communicating with the instruments over the computer, 

the time synchronization may not be precise enough for certain applications. For such 



www.keysight.com/find/labber          Page 40 

applications, Labber supports operating in arm/trig mode and hardware looping for 

enhancing the synchronization and timing precision. 

6.11.1. Arm/trig mode 

In Arm/trig mode, log instrument will be armed to wait for an external trigger before 

starting to acquire data. To turn on arm/trig mode, click the Arm/trig mode checkbox below 

the Step sequence configuration list in the Measurement setup window. The trigger 

channel must be an instrument channel represented by boolean or a button, and it is 

defined by the pull-down menu next to the check box. The instrument used to generate 

the trigger must also be represented in the step configuration list. 

In Arm/trig mode, the following operations are performed at each point of the 

measurement sequence: 

1. Set output values of the step channels, but instruct the instrument to wait for a trigger 

before outputting any signals. 

2. Arm the log channels to get ready to acquire data. 

3. Wait for the time specified in the Timing section in the lower-right corner of the 

main Measurement configuration window. This time can be zero. 

4. Generate the trigger signal. The output of the trigger should be physically connected 

to the step and log instruments, so that the step instrument can start outputting 

signals and the log instruments can start acquiring data. 

5. Read out the acquired data. 

 

6.11.2. Hardware looping 

Some instruments can perform looping of values within the instrument hardware. This 

allows for implementing more efficient looping, since there will be no need for the 

computer to send new values to the instrument at each step value. This mode requires 

that the instrument outputting values support hardware looping, that the instrument 

reading values supports both hardware looping and hardware arming, and that there is a 

trigger defined for instrument synchronization. If the instruments used in 

the Measurement configuration fulfill these requirements, hardware looping can be 

activated by clicking the Hardware loop checkbox next to the arm/trig mode trigger 

controls. 



www.keysight.com/find/labber          Page 41 

In hardware loop mode, the top-most step item in the Step sequence configuration list of 

the Measurement setup window will be controlled by the instrument hardware. Instead of 

setting and getting values point-by-point using the computer, the looping of the top-most 

step item will be handled in the following way: 

1. Calculate the number of values  to step in the top-most step item. 

2. Send all  values of the top-most step item to the output instrument, but instruct the 

instrument to wait for a trigger before outputting any signals. 

3. Arm the log channels to get ready to acquire data. The log instruments will be 

configured to acquire  values. 

4. Wait for the time specified in the Timing section in the lower-right corner of the 

main Measurement configuration window. This time can be zero. 

5. Generate the trigger. The output of the trigger signal should be physically connected 

to the step and log instruments, so that the step instrument can start outputting 

signals and the log instruments can start acquiring data. The step instrument will 

output the  values in the prescribed order, and the log instrument will 

acquire  values. 

6. Read out the acquired  values. 

 

Since multiple values will be read out at once in hardware looping mode, the progress bar 

and the time estimate shown in the Measurement window during experiments may not 

update often enough be accurate. 

6.12. File locks 
The software uses a file locking system to prevent the Log Browser, Log 

Viewer or Measurement Editor from making changes to a file while a measurement is 

running. The locking mechanism works by creating an empty file with the same name as 

the log file that is being measured, but with the ending .lock. Under normal operation, 

the .lock-file will be removed when the measurement is completed, but if the experiment 

was unexpectedly interrupted (for example, if the computer suddenly lost power), 

the .lock-file will persist and prevent any changes from being made to the file. To manually 

remove the locking, go to the folder where the log file is stored, locate the .lock-file and 

delete it. 



www.keysight.com/find/labber          Page 42 

6.13. Measurement settings 
In addition to the general preferences described in Section Prefs, there are a number of 

settings that can be uniquely defined for each specific Measurement. These 

specific Measurement settings can be accessed by clicking the “Show Settings” toolbar icon in 

the top-left corner of the Measurement dialog. The settings are described in detail below. 

6.13.1. General 

Send values in parallel: 

When outputting multiple values in a measurement step sequence, define if data 

should be sent to all instruments in parallel, or sequentially one after each other. 

Default value is True. 

Only send signal if source instrument has been updated: 

If checked, Labber will only perform a signal connection if the source instrument 

has been updated since last call. 

Data compression: 

The value ranges from 0 (no compression) to 9 (maximum compression). Higher 

compression reduces the log file size, but may slightly increase time for 

loading/saving data. 

6.13.2. Optimizer 

The optimizer functionality and the corresponding settings are described in more detail in 

Section Optimizer below. 

6.14. Comparing Measurement configurations 
For complex measurement scenarios containing a large number of instruments, is it 

sometimes difficult to keep track of all setting and parameters involved in the experiment. 

For these cases, Labber provides a convenient feature to compare and highlight 

differences between the current scenario and a previous measurement saved in the Log 

database. The function is accessed by selecting “Tools/Compare Configurations” in the pull-

down menu and selecting the measurement configuration to compare the current 

scenario to. 



www.keysight.com/find/labber          Page 43 

7. Optimizer 
In Optimizer mode, the Measurement program will try to minimize the value of an 

expression based on the measured channels instead of looping through the step channels 

in a pre-determined sequence. This can be useful when the goal of the experiment is to 

minimize a certain quantity as opposed to mapping out the value of the quantity over the 

full parameter space. 

7.1. Optimizer operation 
To enable the optimizer, simply double-click on one of the Step items in the Step 

sequence list in the Measurement program, switch to “Basic settings” (if not already in that 

mode), then click the “Optimize…”-button to convert the step item to an optimizer 

parameter. Instead of sweeping over the parameter, Labber will try to optimize the cost 

function (see below) by varying the parameter over the range specified by the “Min 

value” and “Max value” controls in the dialog. The various options in the dialog are 

described in more detail in Section ParameterSettings below. 

7.1.1. Cost function 

The next step is to define the cost function and the general settings of the optimizer. 

These options are available by clicking the “Show Settings” toolbar icon in the top-left 

corner of the Measurement dialog, and clicking Optimizer in the section list in the left part 

of the dialog. The most import setting is the optimizer cost function, which is defined by 

the expression in the “Minimization function”-control. The cost function takes the latest 

measured values of the log channels as inputs and must return a single scalar value. The 

optimizer algorithm will then try to minimize the value of the cost function by iteratively 

varying the various optimizer parameters. 

The inputs available to the cost function are the latest values of the measured log 

channels, provided in the numpy list "y" . Each element in the list corresponds to a 

channel, and the order of the elements is the same as the order at which the log channels 

appear in the Measurement Editor. If you are using a single log channel, its value can be 

accessed by y[0] . However, note that y[0]  may be scalar or vector-valued, depending on 

if the particular log channel returns a trace of a single value. For the optimizer to work, the 

cost function must always return a scalar, so if your log channel is vector-valued you need 

to apply some operation to convert the vector to a scalar. For example, mean(y[0])  would 



www.keysight.com/find/labber          Page 44 

optimize with respect to the mean of the measured trace. In addition to y , the 

vector x  with the latest values of the optimizer parameters is also available as an input to 

the minimization function. You can use any Python and numpy expression when defining 

the cost function. 

7.1.2. Termination and convergence criteria 

There are three possible criteria for defining when the optimizer should terminate the 

optimization process. 

Absolute target reached: 

If the value of the cost function is less than the Target value, the optimizer will 

terminate. 

Relative tolerance reached: 

If the change in the cost function between calls is smaller than the value given 

by “Relative tolerance”-setting, AND if the change in the optimizer parameter values 

between calls are smaller than the “Precision” setting of each parameter, the 

optimizer will terminate. Note that both criteria need to be fulfilled for 

termination. 

Max number of evaluations reached: 

The optimizer will automatically terminate after performing the number of 

measurements specified by “Max evaluations”. 

By default, the “Target value” is set to minus infinity, which means that it will never 

terminate the optimizer. In addition, the “Relative tolerance” is set to infinity by default, 

which means that only the “Precision” of the individual optimizer parameters matter for 

relative convergence. 

Note that the termination/convergence criteria may differ for different optimizer 

algorithms, the description above only refers to the default Nelder-Mead optimizer 

provided by Labber. 



www.keysight.com/find/labber          Page 45 

7.1.3. Running an optimizer measurement 

When running a measurement with the optimizer enabled, Labber automatically will add a 

step item named “Optimizer iteration” that handles the optimizer loop. Note that it is 

possible to run an experiment with a mix of optimized and non-optimized parameters, 

where the optimizer will execute to find the optimal value of one parameter while 

stepping over different values of another parameter. 

7.2. Optimizer settings 
In order to use the optimizer, both the general optimization protocol and the individual 

optimization parameters must be configured. The various settings are described below. 

7.2.1. General optimizer settings 

These settings define the cost function and the algorithm-specific settings of the 

optimizer, and can be accessed by clicking the “Show Settings” toolbar icon in the top-left 

corner of the Measurement dialog. The settings are described in detail below. 

Method: 

Algorithm used for optimization. 

Max evaluations: 

Maximum number of function evaluations/measurements performed before 

terminating the optimization. 

Minimization function: 

Function for optimizer to minimize. The measured channels are available in the 

variable "y" , which is a list of log channel values. Each list item may be a number or 

a numpy array, depending on the channel datatype. Default is min(y[0]) , which will 

minimize the value of the first log channel. 

Target value: 

Absolute value of minimization function at which the optimization will terminate. 

Default value is -inf , which will prevent the optimizer to terminate until the other 

optimization goals are met. 



www.keysight.com/find/labber          Page 46 

Relative tolerance: 

Change in minimization function between iterations that is acceptable for 

convergence. Default value is inf , which will make the optimizer run until 

the Precision -value of all involved parameters are met. 

7.2.2. Individual parameter settings 

These settings are individual to each optimization parameter and can be accessed by 

double-clicking a channel in the Step sequence list and going to “Optimize…”-mode. 

Start value: 

Initial value for parameter. 

Initial step size: 

Initial step size for the parameter. 

Min value: 

Lowest parameter value allowed during the optimization procedure. 

Max value: 

Highest parameter value allowed during the optimization procedure. 

Precision: 

Target precision for optimizer that will trigger optimizer termination. 

7.3. Custom optimizers 
It is possible to create custom optimizer modules to implement a specific optimization 

protocol. The sections below describe how to define and test a custom optimizer 

algorithm. 

7.3.1. Defining custom optimizers 

It is recommended to use one of the already present optimizer configuration files as a 

template. The custom optimizers should be contained in a single python .py  file, which 

must contain a function called optimize  that takes exactly two parameters: 



www.keysight.com/find/labber          Page 47 

config: 

Python dict with optimizer settings. The keys have the same names as the labels of 

the optimizer settings in the Measurement program. The individual parameter 

settings are stored as a list in the same dictionary, with key optimizer_channels . 

minimize_function: 

Python callable that takes exactly one argument ( x ). The function will run the 

Labber measurement for the provided parameter values x , where each value in 

the vector x  corresponds to an optimizer parameter. The function is typically 

passed directly to the scipy  optimizer, see the provided optimizer Nelder-Mead  for 

an example. 

The function must return a Python dictionary with results from optimizer, 

using scipy ’s OptimizeResult  format. The only necessary key is “ x ”, containing the final 

optimizer parameters. 

When creating a new optimizer, the python file should be given a unique named and 

placed in the local optimizer folder (the folder named “Local optimizers” in 

the Preferences window), instead of the global one (“Optimizer functions” in Preferences). 

This allows the user’s own optimizers to be kept separately from the optimizers provided 

by Labber, and it also prevents optimizers written by the user from being deleted when 

updating the Labber program to a newer version. 

Note that even when making additions/changes to an existing optimizers from the global 

folder, the best practice is to copy that optimizer file from the global folder to the local 

folder, and only make changes to the optimizer version. If optimizers with the same names 

exist in both the local and the global optimizer folders, Labber will always use the 

optimizer in the “Local optimizer”-folder. 

7.3.2. Defining optimizers settings 

For custom optimizers, it is possible to define optimizer-specific configuration parameters 

in addition to the general settings in Section OptimizerSettings above. The optimizer-

specific settings are defined by adding a function define_optimizer_settings()  to the same 

python .py  file that contain the optimizer code. The function should return a list of 

python dicts, where each dict represents a specific setting. The settings are defined in a 



www.keysight.com/find/labber          Page 48 

similar way to quantities of an instrument driver (see Section Quantities), with the 

difference that the settings are specified in a python function instead of 

a .ini  configuration file. Each setting must define the name  and datatype  parameter, all 

other parameters are optional. 

The customs settings will show up in the Optimizer-section of the Settings-pane of the 

Labber Measurement dialog, allowing the user to change their values prior to running a 

measurement. The values of the custom parameters will then be accessible as entries in 

the config  input in the optimize  function defined above. 

As an example, the code below will define custom settings with three parameters for 

the Bayesian-Gaussian-Process optimizer. 

def define_optimizer_settings(): 
    """Define extra settings for optimizer 
 
    Returns 
    ------- 
    optimizer_cfg : list of dict 
        List of configuration items for optimizer, each item is a dict. 
        Necessary keys are "name" and "datatype". 
 
    """ 
    # Bayesian optimization settings 
    optimizer_cfg = [ 
        dict(name='Acquisition function', 
             datatype='COMBO', 
             combo_defs=['LCB', 'EI', 'PI', 'gp_hedge'], 
             def_value='gp_hedge', 
             tooltip=('See https://scikit-optimize.github.io/ for more info'), 
             ), 
        dict(name='kappa', 
             datatype='DOUBLE', 
             def_value=1.96, 
             state_item='Acquisition function', 
             state_values=['LCB', 'gp_hedge'], 
             tooltip=('Controls how much of the variance in the predicted ' + 
                      'values should be taken into account. Higher value ' + 
                      'favours exploration over exploitation and vice versa'), 
             ), 
        dict(name='xi', 
             datatype='DOUBLE', 
             def_value=0.1, 
             state_item='Acquisition function', 
             state_values=['EI', 'PI', 'gp_hedge'], 
             tooltip=('Controls how much improvement one wants over the ' + 
                      'previous best values. Higher value ' + 
                      'favours exploration over exploitation and vice versa'), 



www.keysight.com/find/labber          Page 49 

             ), 
    ] 
    return optimizer_cfg 

7.3.3. Using custom optimizers 

To make the new optimizer available to Labber, place it in the local optimizer folder and 

click the menu alternative “Tools/Reload Optimizers” in the Measurement Setup dialog. This 

will scan the optimizer folders and update the “Method” control in the general optimizer 

settings. 

It is highly recommended to first test the optimizer in a pure Python environment. For an 

example of how to test the optimizer, see the code at the end of the file Nelded-

mead.py  provided in the global optimizer folder. 

  



www.keysight.com/find/labber          Page 50 

8. Log Browser 
8.1. Database 
The log database consist of a set of Labber log files organized in a special folder structure. 

When running a measurement, the program will save the configuration and data in a single 

file in the folder “<Database folder>/xxxx/yy/Data_yyzz”, where <Database folder> is the 

base database folder as set in the Preferences window (see Section PrefsFolder), xxxx is the 

current year (four digits), yy is the current month (two digits) and yyzz is the current 

month+day (total four digits). As an example, the database foLabber_manuallder for logs 

created on January 29, 2014 would be “<Database folder>/2014/01/Data_0129”. 

The user can add additional data like images, scripts or even subfolders to folders within 

the main database folder. The Log Browser and the Measurement programs will ignore any 

additional files when scanning for Labber log files. 

8.2. Log browser dialog 
The Log browser is used to browse through the measured data and give a quick overview of 

the individual log files. The Log Browser is started by from the system tray menu (“Show Log 

Browser”) or by selecting “Window/Show Log Browser” from the main Instrument 

Server window. When starting, the program will scan through the default database folder 

for log files. 



www.keysight.com/find/labber          Page 51 

 

Fig. 8.1. The Log Browser window. 

Figure 8.1 shows the main Log Browser window. The dialog consists of a tool bar at the top, 

with sections on the left showing the database structure, a list in the center with log files, 

and finally a graph and info controls on the right giving a preview of the selected log file. 

The function of the various controls are described below. 

8.2.1. Database hierarchy view 

The four fields Project, Tags, User and Date on the left-hand side of the Log Browser dialog 

give an overview of the database hierarchy and allow the user to limit the selection of logs 

visible in the main log list. The Project, Tags and Date entries can be expanded to reveal 

subfolder selection. The filtering process is exclusive, meaning that only log files that fulfill 

the constraints of all the four fields are shown in the log list. Selecting the “- All entries -

“ item in one of the controls will disable the filtering for that field. 

The Project, Tags, User and Date fields can be hidden from the View-menu in the main 

menubar. 



www.keysight.com/find/labber          Page 52 

8.2.2. Log list 

The list in the center of the dialog shows the logs in the database that fulfill the constraints 

set by the hierarchy fields on the left. Logs that contain particularly important data can be 

starred, which will make them easier to spot in a large selection of logs. To star a log, 

either right-click the entry and select “Star” from the pop-up menu, or select a log and use 

the “Star”-button in the tool bar at the top of the window, or just press the space bar after 

a log has been selected. 

The controls in the toolbar aboce the log list provide options for showing only starred log 

and for filtering logs by name. The log list can be sorted by Name, Creation date or Sweep 

dimensions by clicking the corresponding list header. 

8.2.3. Graph / Log info 

The graph in the top-right corner gives a quick preview of the contents of the selected log 

file. By default, the graph will show an image map if the data is two-dimensional in nature, 

and otherwise a line plot containing the first few entries in the log. The preview can be 

changed by creating a View in the Log Viewer, see Section Views for more information 

on Views. Below the graph, there are controls showing the Step sequence, the Log 

channels and the comment (if present) of the currently selected log. 

8.2.4. Tool bar 

The toolbar contains the following buttons: 

Open Database: 

Open another database than the default one used by the Measurement program. 

The dialog that opens should be pointed to the folder containing the Year-folders of 

the log database. 

Reload Database: 

Reload the current database and scan through all the log files. This is needed if log 

files have been manually added to the database folder. 

Star: 

https://labber.org/online-doc/html/LogViewer.html#sec-views


www.keysight.com/find/labber          Page 53 

Star/unstar the currently selected log. 

Plot Traces: 

This will open the currently selected log in the Log Viewer, see 

Section LogViewer for more information about the Log Viewer dialog. 

Plot Image Map: 

If the selected log contains 2-dimensional data, this button will open the data as an 

image plot in the Log Viewer. 

Show config: 

The button will show/hide an additional side bar with all the instrument 

configurations in the currently selected log. At the bottom of the sidebar, there will 

also be a checkbox “Show all quantities”; if checked, all instrument quantities and 

values are shown in the list, otherwise only the quantities present as channels in 

the Measurement configuration are displayed. 

  



www.keysight.com/find/labber          Page 54 

9. Log Viewer 
The Log Viewer provides an environment for plotting and analyzing log files. The viewer is 

started by double-clicking a log in the Log Browser, which will bring up the main Log 

Viewer window (see Fig. 9.1). The dialog contains a list with all entries in the log, a plot 

showing the currently selected entries, and a set of controls on the left for configuring the 

plot. The data can be plotted as individual Traces or as an Image, and the user can quickly 

switch between the two modes using the Traces/Image buttons in the tool bar. The Log 

Viewer also provide options for saving a View of the log data, which allows plot settings and 

analysis configurations to be easily restored. 

 

Fig. 9.1. The Log Viewer dialog in Trace mode. 

 

9.1. Plot config 
The plot configuration tools on the left-hand side of the dialog determines what is plotted 

in the graph. The controls are: 



www.keysight.com/find/labber          Page 55 

Y-channel: 

The top-most control sets the channel to plot in the graph. If the channel contains 

complex values, the user can choose to plot 

the Real, Imaginary, Magnitude or Phase of the signal. 

X-channel: 

The next control defines the x-axis in the plot. 

Rotation/x (complex only): 

This introduces a phase rotation per x-unit to a complex trace, which has the same 

effect has compensating for electrical delay when plotting signal transmission 

versus frequency. The “Calculate”-button next to the control estimates the rotation 

value that will best compensate such delays. The controls are only visible if the 

plotted quantity is complex. 

Fixed Rotation (complex only): 

This introduces a fixed phase rotation to a complex trace. The “Calculate”-button 

next to the control estimates the rotation value that will maximize the signal in the 

real component, while minimizing the signal in the imaginary one. The controls are 

only visible if the plotted quantity is complex. 

Plot in dB (complex only): 

If plotting magnitude, this converts the value to dB, using the formula 20*log10(y). 

The control is only visible if the plotted quantity is complex. 

Unwrap angle (complex only): 

If plotting the phase, this will unwrap phase jumps around ±180°. The control is 

only visible if the plotted quantity is complex. 

Auto-rotate (complex only): 

If checked, the program will automatically rotate the phase of each trace to 

maximize the real part of the signal. This is the same as the the “Fixed 

Rotation/Calculate”-button, but the algorithm is applied for each trace individually, 



www.keysight.com/find/labber          Page 56 

which means that the individual traces will generally be rotated by different 

amounts. 

Operation: 

Applies an operation to each selected trace. The following operations are available: 

𝒚 −  ⟨𝒚⟩ :   Subtract the average value from each trace. 

Normalize:   The aces are normalized using the formula (𝒚 − ⟨𝒚⟩)/𝐬𝐭𝐝(𝐲). 

𝒅/𝒅𝒙 :    Calculate the numerical derivative. 

FFT:  Numerical Fourier transform. Only positive frequency are 

shown in the resulting plot. 

Histogram:  Bin the data into a histogram, the number of bins is set by 

the “Bins” control. 

Histogram-2D:  Bin complex data into a 2D histogram, with the x/y-axes given 

by the real and imaginary parts of the data. The function only 

works for complex values. 

Smooth: 

Smooth the trace by taking a running average over the number of data points 

specified in the control. 

Traces: 

Applies an operation to the collection of all selected traces. The following trace 

operations are available: 

Show individual:  Standard operation, plot the individual traces as they are. 

Subtract first:   Subtract the first selected trace from the following traces. 

Subtract previous:  Subtract the previous trace. The plot will contain N/2 

elements, with data (Trace 2 - Trace 1), (Trace 4 - Trace 3), 

(Trace 6 - Trace 5), etc… 



www.keysight.com/find/labber          Page 57 

Average:   Plots the average of all selected traces. 

Standard deviation:  Plots the standard deviation of all selected traces. 

9.1.1. Equations 

If the “Enable equations”-control is checked, the - and -values in the plot are modified 

according to the equations given in the two text controls. The equation supports most 

standard mathematical functions like cos(x) , sin(x) , sqrt(x) , exp(x) , etc… Note that the 

raised operator ( ) is implemented as two multiplication signs ( ** ). 

In addition to the variables  and  that represents the input data, the following 

parameters can be used in the equations: 

𝒑#: 

Value of other channels in the measurement. The channels are accessed by the 

parameter p#, where # is a number that represents the channel shown in the list 

below the equation controls. Note that the value will be complex if the channel 

represents a complex quantity; use real(p#) , imag(p#)  or abs(p#)  to get real, 

imaginary or the magnitude of the data. 

𝒏: 

A vector with values {𝟏, 𝟐, 𝟑, . . . , 𝒏𝒕𝒐𝒕} , where 𝒏𝒕𝒐𝒕 is the number of elements in the 

trace. 

𝒎: 

Trace number, starting with 1 for the first measured trace, which is the same as 

the #-parameter in the log entry list. 

m0: 

Trace number, starting with 1 for the first selected trace. 



www.keysight.com/find/labber          Page 58 

9.1.2. Physical vs. Instrument units 

Select “Tools/Plot Dat in Instrument Units” to show the data in instrument units instead of 

physical units. The default units (physical or instrument) can be set in 

the Preferences dialog, under “Measurements/Units”. 

9.2. Entry list 
The entry list shows the contest of the log file, with each entry representing a one-

dimensional trace of data. For multi-dimensional logs, the Log Viewer supports two 

different modes, which are controlled by the “Table”-control to the right of the list. The 

two modes are: 

Log list: 

This is the default mode, where the list contains the entries in the order that they 

were measured, and where the selected entries are shown directly in the graph. 

Multi-column: 

In this mode, the list becomes multi-dimensional, with each column representing a 

step dimension in the Measurement configuration file. The mode supports data 

slicing along different dimensions. The slice directions is set by the “Slice 

parameter”-control directly above the log list. 

9.3. Tool bar 
The toolbar contains the following buttons: 

Open Log: 

Open another log file. 

Reload Log: 

Reload the current log file, which is useful if the measurement is ongoing and new 

data has been added to the log. 

Export: 

Show the Export Figure dialog, for exporting the currently selected data to an image 

file. 



www.keysight.com/find/labber          Page 59 

Views/Save View: 

Select/save the current view. See Section Views for more information. 

Traces/Image: 

Switch between Trace and Image plot mode. 

Plot controls: 

The plot controls contain tools for zooming/panning the graph, and for 

enabling/disabling the cursors. If in Image mode, there are a few extra buttons for 

transposing the data and enabling cross-sections and contrast controls. 

Show config: 

The button will show/hide an additional side bar with all the instrument 

configurations in the currently selected log. Below the list of quantities, there is a 

checkbox “Show all quantities”; if checked, all instrument quantities and values are 

shown in the list, otherwise only the quantities present as channels in 

the Measurement configuration are displayed. The “Project” and “User” controls at 

the bottom of the dialog allow the Project and User tags to be modified. 

9.4. Multi-panel graph mode 
The multi-panel graph allows multiple channels from a single log entry to be plotted in one 

or multiple graphs, as shown in Fig. 9.2. To enable multi-panel graph mode, 

select “Views/Show multiple Graphs” from the pull-down menu. The multi-panel mode is 

enabled by default if the log file contains more than one log channel. When the multi-

panel graph mode is enabled, the toolbar at the top of the window contains an extra sub-

menu for selecting number of figures to be shown, and for controlling whether the x- and 

y-axes of the figures should be synchronized or not. 



www.keysight.com/find/labber          Page 60 

 

Fig. 9.2. The Log Viewer dialog in multi-panel graph mode. 

 

In multi-panel graph mode, the Y-channel control in the Plot config group in the upper-left 

corner of the window is replaced by a list of all measured channels. The channels can be 

assigned to one or multiple graphs by right-clicking the channel name and selecting a 

graph, by right-clicking one of the graphs and selecting a channel, or by dragging a channel 

entry onto one of the graphs. The default multi-panel graph configuration can be set in 

the Preferences dialog. 

9.5. Image mode 
In Image mode, the graph with the individual traces is replaced by an image map, as 

depicted in Fig. 9.3. The third-dimension data is specified by the controls in the “Third 

dimension”-group in the left-hand side of the dialog. In addition to specifying the data 

source, there are controls for performing basic signal operations along the third 

dimension, similar to the trace operations described in Section PlotConfig. The “Third 

dimension”-group also contains the following buttons: 

 



www.keysight.com/find/labber          Page 61 

Show trace list: 

If checked, a trace list is shown allowing the user to select which traces to include in 

the image map. 

Ignore x-data: 

If checked, the program will take the x-data from the first data trace and ignore the 

x-values of subsequent traces. This is useful for confining the representation to a 

square image plot for data where the x-values are changing from trace to trace. 

 

Fig. 9.3. The Log Viewer dialog in Image mode. 

If the log files contains more than two dimension, there will be a “Data selection”-list 

appearing under the group of “Third dimension” controls. The list allows the user to select 

which subset of data to show in the image plot. In image mode, there are a few extra 

buttons in the toolbar at the top of the window. 

Transpose: 

Switch X- and Y-axes in the image map. 

 



www.keysight.com/find/labber          Page 62 

Contrast: 

Show the contrast controls, allowing the user to set the contrast range of the 

image. The range can be manually controlled by shifting the range cursors in the 

spectrum plot. The “Auto range”-button will optimize the contrast by removing 

outliers, while the “Full range”-button will return to full range. 

X/Y cross sections: 

Show the X/Y-cross sections. The position of the cross section is controlled by 

moving the cursors around. 

9.6. Views 
Views provide a way to save the current plot settings and selection of log entries, so that 

the current view can be easily restored. The most recently defined View will also be the 

preview of the log that is shown in the preview graph of the Log browser. 

To save the current view, click the “Save view”-button in the tool bar or select “Views/Save 

view…” in the menu, define a name of the View and click the “OK”-button. 

To restore a previously saved view, select the View to show from the “View”-control in the 

toolbar. Views can be renamed or deleted from the Edit View-dialog, which is accessed by 

selecting “Views/Edit views…” in the menu bar. 

9.7. Exporting data 
Data can be exported to a text file, to a Matlab “.mat” file, or as an image. The export 

options are available from the “File”-menu. 



www.keysight.com/find/labber          Page 63 

9.7.1. Exporting to Image 

 

Fig. 9.3. The Export Image dialog makes it easy to generate publication-quality figures. 

The currently selected plot can be saved as an image file by either selecting “Tools/Save 

Screenshot”, or saved to the clipboard by selecting “Tools/Copy Graph”. To modify the labels 

and the style of the image, select “Export/Export as Image…” or click the Export button in the 

toolbar. This will open the Export Figure dialog, which makes it possible to modify the 

figure axes and labels to render publication-quality figures (see Fig. 9.3). The resulting 

image can be copied to the clipboard or saved in JPEG, PNG, SVG or Adobe PDF format. 

9.7.2. Exporting to Text 

When exporting the text, a dialog will open allowing the user to define what to export. The 

following options are available: 

Data to export: 

Determines whether to export all or only the traces currently selected in the Log 

Viewer. 

Include header with log information: 

If checked, a header with log info will be included at the top of the text file. 

Include separate x-data with each trace: 



www.keysight.com/find/labber          Page 64 

If checked, each data entry will contain two rows of data, one for  and one for . If 

unchecked, the first row is -data, and all the following rows are -data. 

Include data for third dimension: 

If checked, data for a third dimension is added to the end of the text file. The 

channel for which the third dimension data is taken is defined in the control below 

the check box. 

9.7.3. Exporting to Matlab 

The Matlab export will export the selected traces to a single “.mat” file. The data is saved 

into a Matlab struct; the data structure is shown when opening the file in 

the Matlab workspace browser. 

9.7.4. Custom Export 

The Custom Export-function allows the user to export data into a custom format. Note that 

the custom export function always exports the raw data, without applying any operations 

such as smoothing, FFT, etc. The following options are available when exporting custom 

data: 

Data to export: 

Determines whether to export all or only the traces currently selected in the Log 

Viewer. 

Custom script: 

Path to python file containing the custom exportData  function. 

The custom export functionality needs to be implemented in a python function 

called exportData , which should be located in a separate python file (.py). An example of a 

custom export script can be found in the file ExportScript.py in the Script folder of the main 

program directory (see Section Folders for an overview of folder locations). The function 

definition of the exportData -function must have the following format: 

 

https://labber.org/online-doc/html/Installation.html#sec-folders


www.keysight.com/find/labber          Page 65 

def exportData(file_name, step_data, log_data, step_name, log_name, 
               step_unit, log_unit, comment='') 

file_name: 

Output path for the exported data. 

step_data: 

Data for stepped channels. The data is defined in a nested python list of 1-

d numpy arrays (one for each trace). The first index is the step channel number as 

defined in the Measurement dialog step list, the second index is the trace number. 

For example, to access the data for the innermost step channel and the third trace, 

use step_data[0][2] . 

log_data: 

Data for log channels, defined in the same way as the step_data . 

step_name: 

List of strings defining the step channel names. 

log_name: 

List of strings defining the log channel names. 

step_unit: 

List of strings defining the step channel units. 

log_unit: 

List of strings defining the log channel units. 

comment: 

Log comment. 

  



www.keysight.com/find/labber          Page 66 

10. Preferences 
To access the Preferences dialog, select Preferences… from the Instrument Server tray icon 

menu, or “Edit/Preferences…” from the pull-down menu. The dialog has the following 

sections and settings: 

 

Fig. 9.4. Dialog for setting preferences. 

 

10.1. Folders 
The Folders section defines the location of various folders used by the program. 

Database folder: 

Main database folder for saving data from the Measurement program. Default value 

is “<User home directory>/Labber/Data”. 

 



www.keysight.com/find/labber          Page 67 

Instrument drivers: 

Folder containing instrument drivers provided by Labber. Do not alter this folder 

location unless having good reasons for doing so. 

Local drivers: 

Folder containing user-defined instrument drivers. 

Optimizer functions: 

Folder containing optimizer functions provided by Labber. Do not alter this folder 

location unless having good reasons for doing so. 

Local optimizers: 

Folder containing user-defined optimizer functions. 

10.2. Server 
The Server section contains settings related to the Instrument Server. 

Start server on program startup: 

If True, the server starts listening for incoming connections when the program 

starts up. If False, the user has to start the server manually. Default value is True. 

TCP port: 

TCP port used for communication between the Instrument Server and the clients. 

Default port is 9406. 

Notification TCP port: 

TCP port used for sending notifications between the various program parts. The 

communication only occurs on the local computer. The default port is 9407. 

Data transfer format: 

Format use for data transfer over the network. Binary is faster, whereas text is 

human-readable and better for debugging purposes. Default is Binary. 

 



www.keysight.com/find/labber          Page 68 

Server timeout: 

Maximum waiting time before the server returns an error. This value should be 

reasonable long, in case an instrument takes a long time to perform an operation. 

Default value is 1,000,000 seconds. 

Restrict client IP addresses: 

Restrict allowed clients according to the list defined below. Default is True. 

Allowed clients: 

List of IP numbers of allowed clients. Request from computers with IP numbers 

outside the list will be rejected. Note that it is possible to define wild cards, for 

example "192.168.*"  will allow connections from any client with IP starting with 

192.168. Default value is localhost, which only allows connections from the same 

computer that is running the server. 

Allow instruments to be controlled from driver configuration window: 

If True, instrument settings can be updated directly from the driver configuration 

window while a driver is running. If False, the controls are grayed out once the 

driver is started, which makes it less likely that incorrect/too large instrument 

values are outputted by mistake. Default is True. 

Keep instrument drivers running after the measurement ends: 

Starting up a driver may take a few seconds, depending on system. Therefore, 

stopping and starting the driver between measurements may slow down 

experiments, which can be avoided by keeping the driver running after a 

measurement ends. Default is True. 

Change background color for active instruments: 

Change background color of driver dialog for active instruments, to highlight that 

changes to any parameter of the instrument driver window will directly update the 

instrument hardware. Default is True. 

Change background color for instruments in Measurement dialog: 



www.keysight.com/find/labber          Page 69 

Use different background color for instrument configuration dialogs in the 

Measurement program than in the Instrument server, to make it clear which 

program the dialog belongs to. In the Instrument Server, the instrument 

configuration dialog is used to directly control the hardware settings, meaning that 

any changes to the dialog will directly affect the state of the hardware. In contrast, 

in the Measurement program the dialog is used to set up a configuration that will be 

used in a specific Measurement, but no changes are made to the hardware until the 

measurement is started. To avoid confusion, if this setting is True the Instrument 

driver configuration windows have a different background color when opened 

within the Measurement program and in the Instrument Server. Default is True. 

Instrument log level: 

Amount of information to log when performing instrument communication. The log 

can be viewed by selecting “Log/View Instrument Log…” in the Instrument 

Server menu bar. Default value is Basic. 

Network log level: 

Amount of information to log when performing network communication. The log 

can be viewed by selecting “Log/View Network Log…” in the Instrument Server menu 

bar. Default value is Basic. 

10.3. Measurement 
This section contains settings related to the Measurement program. 

Sort step items before starting Measurement: 

If checked, step items are sorted according to instrument type before starting a 

Measurement. 

Default units, step sequences: 

Default units when defining a new step sequence in the Measurement Setup dialog. 

Default units, viewing data: 

Default units when viewing data in the LogBrowser and the LogViewer. 



www.keysight.com/find/labber          Page 70 

Default sweep units: 

Set if sweep rates should be defined in terms of rate per second or rate per minute 

in the Instrument Server and Measurement Editor programs. If set to Instrument 

default, the program will use the default units defined in the settings of each 

instrument driver (see Section SweepDriver). Note that this setting only affects the 

sweep units shown in the dialog windows, the sweep units used within a particular 

instrument driver implementation is always set by the configuration file of the 

driver (see Section SweepDriver). 

Graph refresh interval: 

Refresh interval for graph. Use larger values if the user interface becomes 

unresponsive. Default value is 80 ms. 

Default live colormap: 

Default colormap for viewing image data in the live graph shown during 

measurements. 

10.4. Log Viewer 

Default colormap: 

Default colormap when viewing data as images in the LogBrowser and 

the LogViewer dialogs. 

Default cursor type: 

Default cursor type in all graphs. 

Default complex representation: 

Default format for representing complex scalar data. 

Default complex representation, vector: 

Default format for representing complex vectors, typically from instruments such 

as spectrum analyzers and vector analyzers. 

Default panel configuration, 2 channel: 



www.keysight.com/find/labber          Page 71 

Default multi-panel graph configuration for showing two log channels. 

Default panel configuration, 3 channel: 

Default multi-panel graph configuration for showing three log channels. 

Default panel configuration, 4 channel: 

Default multi-panel graph configuration for showing four log channels. 

Save current view when closing Log Viewer: 

Automatically save current view when closing the Log Viewer. 

10.5. Logger 

Logger folder: 

Database folder for saving logging data from the Logger program. 

Number of points in Acquire graph: 

Number of points shown in the live logger graph. 

Alarm de-activation range: 

Range at which an out-of-range alarm de-activates. 

Dark mode: 

If checked, the visualizer will plot data on a dark background. 

Refresh interval in Logger Visualize: 

Data refresh interval in Logger visualize. 

10.6. Advanced 

Application library: 

Path to main Labber application. 

Python distribution: 



www.keysight.com/find/labber          Page 72 

Path to custom Python executable. The Python distribution must be running 

Python 3.5 or later. Leave blank to use the built-in Labber Python distribution. For 

Windows, pick the executable pythonw.exe  instead of python.exe  to avoid creating a 

console window for each driver process. For more information, see 

Section PythonDistExternal. 

Temporary items: 

Folder for storing settings and temporary items. Do not alter this item unless 

having good reasons for doing so. 

Show error if setting the value of an inactive quantity: 

If unchecked, the program will not show an error if trying to set the value of an 

inactive quantity. 

Send status updates to clients: 

Send status updates from Instrument server to log clients during slow operations 

such as sweeping. 

Interval for checking swept instruments: 

Time interval between checks when testing if a swept instrument has reached the 

final value. 

VISA library: 

Path to VISA library. Leave blank to use default library. 

Delay for wait dialog: 

Shortest delay time for showing the wait dialog. Default value is 2 seconds. 

Show error dialog in script mode: 

If unchecked, no error dialog will be shown if an error occurs during a scripted 

Measurement. This can be useful if no user interactions is required to handle 

errors. 

Run queued experiments in separate process: 



www.keysight.com/find/labber          Page 73 

If checked, queued measurements will run in a separate instance of the 

Measurement program. This may cause conflicts if queued experiments and 

measurement from the user interface are started at the same time. 

11. Scripting 
This chapter describes how to write scripts to perform sequence of experiments. Scripting 

is useful for running multiple experiments after each other, or for defining sequences 

where some properties of a measurement is updated depending on the result of a 

previous measurement. 

In a typical scripting setup, the user would first create a number 

of Measurement configurations using the standard Measurement configuration dialog, and 

then save those configurations files to a folder on disk. The script would then be 

programmed to execute those configurations, either as they are or by first updating one 

or multiple parameters of the Measurement configurations. 

The most basic way of implementing scripting is to call the Measurement program with 

command-line arguments, as described in Section console below. The advantage of this 

method is that one can use any programming language that supports calling an external 

program for writing the script, the disadvantage is that the function calls can become 

rather long and difficult to read. If you plan to script experiments using the programming 

language Python, there are a number of helper functions that will simplify the procedure. 

These helper functions are described in Section scriptPython. 

11.1. Console options 
In addition to the user-interface based Measurement configuration dialog, it is also 

possible to start experiment from the command line. The program is called Measurement-

Console.exe , and is located in the main program folder (see Section Installation for the 

folder structure). The command-line arguments are: 

Measurement-Console.exe [-h] -i INPUT_PATH [-u CHANNEL VALUE TYPE] 
           [-m CHANNEL] [-o OUTPUT_PATH] [-e EXPORT_PATH] [-r CHANNEL] 

-h, –help: 

Show a help message and exit 



www.keysight.com/find/labber          Page 74 

-i INPUT_PATH: 

Path to the measurement configuration file to execute or rearrange. 

-u CHANNEL VALUE TYPE: 

Update the step item CHANNEL  with a new value. The TYPE -argument defines what 

property of the step item to update, and must be one 

of SINGLE, START, STOP, CENTER, SPAN, STEP, N_PTS . Note that scripted measurements 

do not raise an error if updating an inactive step item. Instead, the step item is 

automatically switched to the new step type. For example, if the original step type 

is SINGLE , and the user updates the START  value, the step type is changed to START-

STOP . Note that it is up to the user to ensure that all other relevant quantities are 

updated as well (in the example, the STOP  value and the STEP  or N_PTS  value). 

-m CHANNEL: 

Specifies the master channel name. Values of all other updated channels will be 

defined by look-up tables relative to the master channel values. 

-o OUTPUT_PATH: 

Specifies the path of the output log file. If not given, the data will be be saved to the 

input measurement configuration file. 

-e EXPORT_PATH: 

After completed measurement, export the last trace to the specified text file. Any 

previous contents in that file will be overwritten. This is useful for creating scripts 

where future measurements depend on the results of previous measurements. 

-r CHANNEL: 

Re-arrange a log with N 1-dimensional entries of length M to a 2-dimensional log 

with dimensions (N, M). The CHANNEL  determines which data to use when defining 

the second dimension. It is also possible to rearrange into a multi-dimensional log 

by specifying multiple channels, but if so lists of step values for each dimension 

need to be specified as well. For example, to rearrange a log with 6 entries into a 

multi-dimensional log with 3*2 entries, use -

r "Channel 1" "1.0, 2.0, 3.0" "Channel 2" "1.0, 2.0" . Note that the internal order of 



www.keysight.com/find/labber          Page 75 

the new dimensions is defined by the order in which they appear in the step list of 

the original Measurement configuration file, not by the order they are listed after 

the -r  command. Also, note that no measurement will be performed when running 

the program with this option. 

If no arguments are given, the program will open the standard user interface window for 

configuring the experiment. 

11.2. Scripting using Python 
The Python scripting helper functions are part of the Labber API, located in 

the Script folder of the main program directory (see Section Folders for an overview of 

folder locations). To provide easy access to the Labber API, it’s recommended to add 

the Script folder to your Python path. For more information on the Python API, see 

Section PythonAPI. 

The helper functions in the ScriptTools module are designed for repeatedly performing a 

number of Measurements that each contain one-dimensional sweeps, and where one or 

multiple parameters of the Measurement configurations are updated between each 

measurement. The functions are best explained by an example, which we’ll take from the 

domain of superconducting qubits. For the purpose of this example, we can view the qubit 

as a slightly anharmonic oscillators whose frequency tunes with applied magnetic flux. 

The qubit is read out by coupling it to microwave resonators, and the coupling is arranged 

in a way that changing the qubit frequency will cause a slight shift of the resonator 

frequency. 

Now, say that we want to probe the qubit frequency as a function of applied flux. The 

difficulty is that the changing the flux will affect both the qubit and the resonator 

frequencies, which means that we can not use a fixed-frequency read-out tone. Instead, 

we need to implement the following procedure: 

1. Set new magnetic flux value 

2. Measure resonator 

3. Find resonance frequency  of resonator 

4. Measure qubit, while keeping the resonator at  

5. Repeat for all values of magnetic flux 

https://labber.org/online-doc/html/Installation.html#sec-folders
https://labber.org/online-doc/html/PythonAPI.html#sec-pythonapi


www.keysight.com/find/labber          Page 76 

The file ExampleScript.py in the Script folder contain an example script for performing the 

sequence described above. The script assumes that the user has created 

two Measurement configurations, one for measuring the resonator, and one for measuring 

the qubit, and that both Measurement configurations have a single-valued step item called 

’Flux bias’ that control the magnetic flux. 

12. Instrument drivers 
This chapter describes the definition of instrument drivers and instructions for how to 

create custom drivers. The general driver structure is visualized in Fig. 12.1. 

The Communication part describes the interface and address used for communication, and 

is normally handled by the Labber Instrument server. The Model and options part provides a 

way to enable/disable certain features of a driver depending on the instrument 

model/installed options. Finally, the list of Quantities define all properties and settings 

available on the instrument. 

 

Fig. 12.1. Structure of an Instrument driver. The Communication part is handled by 

the Instrument server, while the Model and Options and the Quantities are defined in the driver 

configuration file. 

 

12.1. Driver definition files 
The driver definition file is a file specifying the instrument name, vendor, model and 

options as well as a list of quantities. For basic instrument drivers, where the value of 

each quantity can be set or read using a single text command over GPIB, serial, USB or 

ethernet using the VISA protocol, all information about the instrument and the 

communication is contained in the definition file. For more advanced drivers, for example 



www.keysight.com/find/labber          Page 77 

network analyzers that capture vector data, the driver definition file needs to be 

complemented with Python source code for implementing the more advanced instrument 

operations (see Section PythonDriver). The Python code must be Python 3 compatible. 

The driver definition files provided by Labber are located in the “Instrument drivers” folder 

(see Section PrefsFolder for information on folder locations). The definition files are plain 

text files using the INI file format, which consists of a number of “sections”, each 

containing a list of “properties”. The driver file requires implementing sections for General 

settings, Model and options and VISA Settings, see below for more information about each 

section. It is recommended to use one of the already present drivers configuration files as 

a template. For an example of creating an instrument driver from scratch, see 

Section PythonDriver. 

When creating a new driver, the definition file should be placed in the local driver folder 

(the folder named “Local drivers” in the Preferences window), instead of the global one 

(“Instrument drivers” in Preferences). This allows the user’s own drivers to be kept 

separately from the drivers provided by Labber, and it also prevents drivers written by the 

user from being deleted when updating the Labber program to a newer version. 

The INI configuration file can be placed directly in the “Drivers” folder, or within a 

subfolder of that directory. Using a subfolder is the recommended approach, since it gives 

a natural place to store extra files related to the driver. 

Note that even when making additions/changes to an existing driver from the global 

folder, the best practice is to copy that driver file from the global folder to the local folder, 

and only make changes to the local version. If drivers with the same names exist in both 

the local and the global driver folders, Labber will always use the driver in the “Local 

drivers”-folder. 

12.1.1. Signal Generators and Signal Analyzers 

Signal Generators and Signal Analyzers are drivers that are used to generate or analyze 

waveforms. The drivers do not perform any instrument communication, which means that 

the Model and options and the VISA Settings parts of the INI file do not need to be defined. 

To define that a driver is a Signal Generators or a Signal Analyzers, set the corresponding 

item in the General settings-part of the INI file as described below. See Section Signals for 



www.keysight.com/find/labber          Page 78 

more information about how Signal Generators or a Signal Analyzers are used in an 

experiment. 

12.1.2. General settings 

The General settings-section define name and version of the driver. Note that it is 

the name property in this section that sets the driver name, not the name of the driver 

definition INI file. 

name: 

The name is shown in all the configuration windows. 

version: 

The version string should be updated whenever changes are made to this config 

file. 

driver_path: 

Name of folder containing the code defining a custom driver. Do not define this 

item or leave it blank for any standard driver based on the built-in VISA interface. 

interface: 

Pre-defined communication interface for instrument, default is GPIB . 

address: 

Pre-defined address for instrument, default is an empty string. 

startup: 

Pre-defined startup option for instrument, default is Set config . 

signal_generator: 

Set to True if driver is a Signal Generator. Default is False. 

signal_analyzer: 

Set to True if driver is a Signal Analyzer. Default is False. 



www.keysight.com/find/labber          Page 79 

controller: 

Set to True if driver is a Controller. Default is False. For more information, see 

Section. ControllerDriver below. 

support_hardware_loop: 

Set to True if driver supports hardware looping. Default is False. 

support_arm: 

Set to True if driver supports hardware arming. Default is False. 

use_32bit_mode: 

Set to True if driver should run in a 32-bit Python environment. Default is False (run 

in 64-bit). For more information, see Section PythonDist below. 

12.1.3. Model and options 

The Model and options-section provides a way to enable/disable certain features of a 

driver depending on the instrument model/installed options. 

model_str_1, model_str_2, etc: 

List of models supported by the driver. 

check_model: 

If True, the driver checks the instrument model id at startup (True or False). The 

model is checked by sending the model_cmd  command (see below) over 

the VISA interface. Default is False. 

model_cmd: 

Command used to check the instrument model. Default command is *IDN? . 

model_id_1, model_id_2, etc: 

Model strings expected to be returned by the instrument by the *IDN?  call. If not 

defined, the program assumes model_str_1, model_str_2, etc  as default values 



www.keysight.com/find/labber          Page 80 

option_str_1, option_str_2, etc: 

List of available instruments options. The options are shown as checkbox controls 

in the driver configuration window. 

check_options: 

If True, the driver checks the installed instrument options at startup (True or False). 

The option is checked by sending the option_cmd  command (defined below). Default 

is False. 

option_cmd: 

If check_options  is set to True, define command for getting the options from the 

instrument. 

option_id_1, option_id_2, etc: 

If check_options  is set to True, supply valid id option strings that the instrument 

returns when sending the option_cmd . The list of option_id  should match the 

elements in the list option_str . 

12.1.4. VISA Settings 

This section contains configuration of the VISA protocol. The VISA protocol enables text-

based communication with instruments over GPIB, USB, serial and ethernet interfaces. 

use_visa: 

Enable or disable communication over the VISA protocol (True or False). If False, the 

driver will not perform any instrument operations (unless there is a 

custom Python driver, see Section PythonDriver). 

reset: 

Reset the interface (not the instrument) at startup (True or False). Default is False. 

query_instr_errors: 



www.keysight.com/find/labber          Page 81 

Query instrument errors (True or False). If True, every command sent to the device 

will be followed by an error query. This is useful when testing instruments, but may 

degrade performance by slowing down the instrument communication. 

error_bit_mask: 

If query_instr_errors  is True, set bit mask for checking status byte errors (default is 

255, include all errors). The bits signal the following errors: 

0: Operation 

1: Request control 

2: Query error 

3: Device error 

4: Execution error 

5: Command error 

6: User request 

7: Power on 

error_cmd: 

Command string to be sent to instrument when querying for instrument error 

messages. 

init: 

Initialization commands are sent to the instrument when starting the 

driver. *RST  will reset the device, *CLS  clears the interface. 

final: 

Final commands sent to the instrument when closing the driver. 

str_true: 

String used for sending boolean True to the instrument, default is 1 . 



www.keysight.com/find/labber          Page 82 

str_false: 

String used for sending boolean False to the instrument, default is 0 . 

str_value_out: 

Conversion string used for converting value to string to be sent to the instrument. 

Default is %.9e , which creates 9-digit string using exponential notation. To create 

strings with floating-point notation, use %.9f  instead. 

str_value_strip_start: 

Number of characters to strip from the beginning of the string returned from the 

instrument, before trying to convert to a number. Default is 0 . 

str_value_strip_end: 

Number of characters to strip from the end of the string returned from the 

instrument, before trying to convert to a number. Default is 0 . 

always_read_after_write: 

If True , the program will automatically read the response from the instrument after 

each write command. Useful for instruments that always reply to all commands. 

Default is False . 

The following entries are optional, they provide detailed settings for the communication 

interface. Note that the values provided in the INI file will be the default setting for the 

driver, but the user can always change the settings by going to the Communication settings 

of the instrument driver user interface and clicking “Show advanced interface settings”. 

timeout: 

Time (in seconds) before the timing out while waiting for an instrument response. 

Default is 5 seconds. 

term_char: 

Termination character used by the instrument, valid values 

are Auto , None , CR , LF , CR+LF . 



www.keysight.com/find/labber          Page 83 

send_end_on_write: 

Assert end during transfer of last byte of the buffer 

suppress_end_on_read: 

Suppress end bit termination on read 

baud_rate: 

Communication speed for serial communication. Default is 9600. 

data_bits: 

Number of data bits for serial communication. Default is 8. 

stop_bits: 

Number of stop bits for serial communication. Default is 1, possible values are 1, 

1.5 and 2 

parity: 

Parity used for serial communication, possible values 

are No parity , Odd parity , Even parity . 

gpib_board: 

GPIB board number. Default is 0. 

gpib_go_to_local: 

Make GPIB instrument automatically go to local after closing. Default is False . 

tcpip_specify_port: 

Use specific TCPIP socket port. Default is False . 

tcpip_port: 

TCPIP socket port. Only relevant if tcpip_specify_port  is True . 



www.keysight.com/find/labber          Page 84 

12.2. Quantities 
All quantities are defined in separate sections, with the name of the quantity given by the 

section header. The properties of a quantity are defined by a number of keywords, see 

below for a list the possible options. Only the datatype  keyword is mandatory, the other 

ones are optional. 

datatype: 

The data type should be one 

of DOUBLE, BOOLEAN, COMBO, STRING, COMPLEX, VECTOR, VECTOR_COMPLEX, PATH  or BUTTON . 

Only DOUBLE , BOOLEAN  and COMBO  datatypes can be stepped in a measurement. 

The BUTTON  datatype does not have an associated value, and can therefore not be 

controlled from the Measurement program. It is typically used to manually force an 

instrument to perform a certain task. 

label: 

Label shown next to control in user interface. If not specified, the label defaults to 

the name of the quantity. 

unit: 

Unit for the quantity. 

def_value: 

Default value. 

tooltip: 

Tool tip shown when hovering the mouse over the control in the driver GUI. 

low_lim: 

Lowest allowable value. Defaults to -INF . 

high_lim: 

Highest allowable values. Defaults to +INF . 

x_name: 



www.keysight.com/find/labber          Page 85 

X-axis label for a vector data. Only valid if datatype  is VECTOR  or VECTOR_COMPLEX . 

x_unit: 

X-axis unit for a vector data. Only valid if datatype  is VECTOR  or VECTOR_COMPLEX . 

combo_def_1, combo_def_2, …: 

Options for a pull-down combo box. Only used when datatype  is COMBO . 

group: 

Name of the group where the control belongs. 

section: 

Name of the section where the control belongs. 

state_quant: 

Quantity that determines this control’s visibility. 

state_value_1,state_value_2, …: 

Values of "state_quant"  for which the control is visible. 

model_value_1, model_value_2, …: 

Values of "model"  for which the control is visible. The value must match one of the 

models defined in the Model and Options-section described above. 

option_value_1, option_value_2, …: 

Values of "option"  for which the control is visible. The value must match one of the 

options defined in the Model and Options-section described above. 

permission: 

Sets read/writability, options are BOTH, READ, WRITE  or NONE . Default is BOTH . 

 

 



www.keysight.com/find/labber          Page 86 

show_in_measurement_dlg: 

This setting is optional. If True , the quantity will be automatically shown when 

adding the instrument to a Measurement configuration. This is useful for instrument 

that contain a lot of quantities, but where most are not likely to be stepped in a 

measurement. 

set_cmd: 

Command used to send data to the instrument. Put “<*>” where the value should 

appear. If “<*>” does not occur in the string, the value will be added after the 

command. 

get_cmd: 

Command used to get the data from the instrument. Default is set_cmd? . 

cmd_def_1, cmd_def_2, …: 

List of strings that define what is sent to/read from an instrument for a quantity 

that is defined as a a list of multiple options. Only used when datatype  is COMBO . 

See Section SweepDriver for a list of extra properties that need to be defined for 

instruments that support sweeping. 

The Instrument Server uses the list of quantities to create the controls in the driver dialog 

window, as shown in Fig. 12.2. 



www.keysight.com/find/labber          Page 87 

 

Fig. 12.2. An Instrument driver dialog, shown together with the corresponding instrument 

definition file. 

 

12.3. Custom drivers - Python code 
Custom drivers are required when single-line command strings get_cmd  and set_cmd  as 

defined in the instrument definition file are too simple to read or write a value to an 

instrument. This is often the case for instruments like network analyzers or oscilloscopes, 

which contained vector-valued quantities that depend in complicated ways on other 

settings of the instrument. 

The process of creating a custom driver is best described by an example. We are going to 

create a driver that generates a sinusoid, but without doing any actual instrument 

communication (the driver will be a Signal Generator, as describe in Section Signals). For an 



www.keysight.com/find/labber          Page 88 

example involving instrument communication, see the drivers for one of the network 

analyzers or oscilloscopes in the Instrument Drivers folder. 

12.3.1. Creating the driver definition file 

Every driver, even the custom ones, require a definition file. We start with the General 

settings-section: 

[General settings] 
 
# The name is shown in all the configuration windows 
name: Simple Signal Generator 
 
# The version string 
version: 1.0 
 
# Name of folder containing the code defining a custom driver 
driver_path: SimpleSignalGenerator 
 
# Define that the driver is a Signal Generator 
signal_generator: True 
 

Note that we define the driver_path : this signals that there is a custom driver available for 

this instrument. When starting the driver, the Instrument Server will look for 

the Python file “SimpleSignalGenerator/SimpleSignalGenerator.py” in the Instrument 

Drivers folder, or for the file “SimpleSignalGenerator.py” in the folder where 

the INI configuration file is located. See Section PythonCode below for more information 

on how to implement the code for custom drivers. 

This particular instrument driver does not do any instrument communication and 

therefore does not have any model or option definitions, so we can skip the Model and 

options-section and the VISA settings-section. 

Next, we need to define the quantities of the driver. For this example, we want to be able 

to define the amplitude, frequency and phase of the signal to be generated. In addition, we 

want to add the option of adding white noise to the signal. 

[Frequency] 
datatype: DOUBLE 
unit: Hz 
def_value: 10.0 
 
[Amplitude] 



www.keysight.com/find/labber          Page 89 

datatype: DOUBLE 
unit: V 
def_value: 1.0 
 
[Phase] 
datatype: DOUBLE 
unit: deg 
def_value: 0.0 
 
[Add noise] 
datatype: BOOLEAN 
def_value: False 
 
[Noise amplitude] 
datatype: DOUBLE 
unit: V 
def_value: 0.1 
state_quant: Add noise 
state_value_1: True 
 
[Signal] 
datatype: VECTOR 
permission: READ 
x_name: Time 
x_unit: s 
 

Note that the Noise amplitude quantity will only be visible if Add noise is True. The last 

quantity (“Signal”) represent the signal we want to generate in the Python code. 

The permission  of this quantity is set to READ , to indicate that this quantity can only be 

read, not written. 

For your convenience, this example driver INI definition file and the 

corresponding Python code are available under Examples in the Instrument Drivers folder. 

12.3.2. Implementing the Python code 

Once the INI file has been created, we need to implement the Python code that generates 

the signal. The code should define a subclass of either 

the InstrumentDriver.InstrumentWorker  or the VISA_Driver  class, depending on if the driver 

will use the VISA protocol for communication or not. The VISA_Driver  class is a subclass 

of InstrumentDriver.InstrumentWorker , and details for how to subclass the VISA_Driver  is 

described in Section SubClassVISA below. Labber is running Python 3 for all instrument 

drivers, make sure that all code is Python 3 compatible. See Section PythonDist below for 

more information about the Python distribution. 



www.keysight.com/find/labber          Page 90 

The new class should re-implement the four 

functions performOpen , performClose , performSetValue  and performGetValue , which are called 

when an instrument is started, stopped, and called for setting or getting an instrument 

value, respectively. To describe the procedure, we create a Python class for the Simple 

Signal Generator-example shown above: 

import InstrumentDriver 
import numpy as np 
 
class Driver(InstrumentDriver.InstrumentWorker): 
    """ This class implements a simple signal generator driver""" 
 
    def performOpen(self, options={}): 
        """Perform the operation of opening the instrument connection""" 
        pass 
 
    def performClose(self, bError=False, options={}): 
        """Perform the close instrument connection operation""" 
        pass 

As described in the previous section, the Simple Signal Generator is only for demonstration 

purposes and will not involve any actual instrument communication, so we 

subclass InstrumentDriver.InstrumentWorker  instead of VISA_Driver . In this example, the 

functions performOpen  and performClose  don’t do anything. 

The code for the more interesting functions performSetValue  and performGetValue  follow 

below: 

def performSetValue(self, quant, value, sweepRate=0.0, options={}): 
    """Perform the Set Value instrument operation. This function should 
    return the actual value set by the instrument""" 
    # just return the value 
    return value 
 
def performGetValue(self, quant, options={}): 
    """Perform the Get Value instrument operation""" 
    # proceed depending on quantity 
    if quant.name == 'Signal': 
        # if asking for signal, start with getting values of other controls 
        amp = self.getValue('Amplitude') 
        freq = self.getValue('Frequency') 
        phase = self.getValue('Phase') 
        add_noise = self.getValue('Add noise') 
        # calculate time vector from 0 to 1 with 1000 elements 
        time = np.linspace(0,1,1000) 
        signal = amp * np.sin(freq*time*2*np.pi + phase*np.pi/180.0) 
        # add noise 
        if add_noise: 



www.keysight.com/find/labber          Page 91 

            noise_amp = self.getValue('Noise amplitude') 
            signal += noise_amp * np.random.randn(len(signal)) 
        # create trace object that contains timing info 
        trace = quant.getTraceDict(signal, t0=0.0, dt=time[1]-time[0]) 
        # finally, return the trace object 
        return trace 
    else: 
        # for other quantities, just return current value of control 
        return quant.getValue() 
 

The functions performSetValue  and performGetValue  take a quant  object as a first parameter. 

The object represents the quantity to be read/set, and all properties of the quantity (as 

defined in the INI configuration file) can be accessed from the object’s data members. This 

is used in the performGetValue -function, where the object variable quant.name  is accessed to 

find out which quantity to read. See Section quantObj below for more info about 

the quant  objects. 

The options  variable present in both performSetValue  and performGetValue -definitions is 

a Python dictionary that contains additional options for setting/getting a value. It is used 

to provide a way to determine if a driver is called multiple times within a single step of 

a Measurement (see functions isFirstCall  and isFinalCall  in the list of driver helper 

functions in Section driverObj below). 

12.3.3. Helper functions for quant  objects 

The quant  object represents an instrument quantity, and it provides a few helper 

functions that are useful when writing drivers: 

quant.getValue(): 

The function returns the current value of the quantity. Note that it will just return 

the local value stored the driver, no instrument communications is performed 

when calling this function. 

quant.getValueIndex(value=None): 

The function returns the value as an index number, only useful for quantities 

with datatype=COMBO . If value=None , the function will return the local value stored the 

driver. Note that no instrument communications is performed when calling this 

function. 

https://labber.org/online-doc/html/Drivers.html#sec-driverobj


www.keysight.com/find/labber          Page 92 

quant.setValue(value, rate=None): 

The function sets the current value of the quantity. Note that it will just update the 

local value stored in the driver, no instrument communications is performed when 

calling this function. 

quant.getTraceDict(y, x0=0.0, dx=1.0, x1=None, x=None, logX=False): 

Returns a python dictionary containing the numpy array y , together with 

additional x-scale info. The x-scale information can be supplied either as start value 

and step size (x0, dx) , as start and stop values (x0, x1) , or as a full vector (input 

parameter x , must have same length as y ). If using the start/stop 

notation (x0, x1) , it is possible to set logX  to True  to create a trace with 

logarithmic interpolation between the start/stop values. These dictionaries are 

used to pass waveform data between drivers with vector-valued quantities, 

like Signal Generator and Signal Analyzers. 

quant.getCmdStringFromValue(value=None): 

Convert the input value to a string formatted for sending to the instrument. If the 

input parameter value  is None , the current value is used. 

quant.getValueFromCmdString(sValue): 

Inspect the input string sValue  coming from the instrument and return a numerical 

value. 

12.3.4. Helper functions for driver  objects 

The base driver object InstrumentDriver.InstrumentWorker  provides the following helper 

functions. The options  variable present in the functions isFirstCall  and isFinalCall  is 

a Python dictionary with additional options that is passed to 

the performSetValue  and performGetValue -functions when calling the driver from outside. 

getName(): 

Return name of instrument, as defined in the user-interface dialog. 

getInterface(): 



www.keysight.com/find/labber          Page 93 

Return instrument interface, as defined in the dialog. The interface type is one 

of GPIB , TCPIP , USB , Serial , VISA , Other , None . 

getAddress(): 

Return address of instrument, as defined in the user-interface dialog. This is 

function can be used to determine when opening communication to an instrument. 

getCommunicationCfg(): 

Return communication configuration as a dictionary, with the following 

keys: Timeout , Term. character , Send end on write , Suppress end bit termination on re

ad , Baud rate , Data bits , Stop bits  and Parity . The configuration items are 

described in Section CommunicationCfg above. 

getValue(quant_name): 

The function is used to access the current local value of any quantity of the driver. 

The function is used repeatedly in the example above for getting the amplitude, 

frequency and phase when creating the sinusoid. 

getValueArray(quant_name): 

Same as above, but will return current value as a numpy array instead if the 

quantity is vector-valued. Otherwise, it’ll return an empty numpy array. 

getValueIndex(quant_name): 

Get value of quantity as numerical index. Only useful for quantities 

with datatype=COMBO . 

getCmdStringFromValue(quant_name): 

Get command string for current value of quantity with name quant_name . 

See quant.getCmdStringFromValue  in section above for more info. 

setValue(quant_name, value, sweepRate=None): 

The function is used to set the local value of any quantity of the driver. No 

hardware communication will take place; to actual set the instrument value, use 

the function sendValueToOther  defined below. 



www.keysight.com/find/labber          Page 94 

readValueFromOther(quant_name, options={}): 

The function will read the value of another quantity from the instrument. In 

contrast to the getValue  mentioned above, this function will perform actual 

hardware communication to retrieve the current value from the instrument. The 

function will return the updated value. 

sendValueToOther(quant_name, value, sweep_rate=0.0, options={}): 

The function will communicate with the hardware to update the value to another 

quantity of the instrument. The function will return the updated value. 

getModel(): 

Get model string. 

setModel(model_name): 

Set model string. 

getOptions(): 

Get list of strings describing installed options. 

setInstalledOptions(list_of_options): 

Set list of strings describing installed options. 

isConfigUpdated(bReset=True): 

Returns true if any non-read-only quantity of the instrument has been updated 

since the last call to this function where bReset  was True . 

isFirstCall(options): 

If a driver is used in a Measurement and there are multiple quantities of that driver 

that will be updated within a single step, it can be advantageous to delay outputting 

data to an instrument until all local driver quantities have been updated. This 

function returns True  if the current call is the first one within the current 

measurement step. 

isFinalCall(options): 



www.keysight.com/find/labber          Page 95 

Same as above, but returns True  if the current call is the last one. 

isStopped(): 

Return True  if the user stopped the measurement. If the instrument 

communication is expected to take a long time, it’s recommended to periodically 

call this function to ensure that the driver remains responsive to user interaction. 

isHardwareTrig(options): 

Return True  if the caller is in hardware trig mode. 

isHardwareLoop(options): 

Return True  if the caller is in hardware loop mode. 

getHardwareLoopIndex(options): 

Get the current hardware loop index. The function returns a tuple ( index , n_pts ), 

where index  is the index for the current call, and n_pts  is the total number of 

points of the hardware loop. 

log(message, level=20): 

Log a message to the instrument logger. The log level is an integer ranging from 30 

(warning, always shown) to 10 (debug, only shown in debug mode). 

wait(wait_time=0.05): 

Pause execution and put the process to sleep for the given time (in seconds). 

getValueFromUserDialog(value=None, text=’Enter value:’, title=’User input’): 

Show user interface dialog to ask the user for an input value. The function returns 

the value entered by the user. 

reportStatus(message): 

Report status update to the Instrument Server and connected clients. The 

argument message  should be a string. 

reportProgress(quant, progress): 



www.keysight.com/find/labber          Page 96 

Report progress update when setting/getting the value of the quantity quant  to 

the Instrument Server and connected clients. The argument progress  should be a 

floating point value between 0.0 and 1.0. The function is used to provide feedback 

to the user when performing slow instrument operations, for example when 

sweeping a magnetic field. 

reportCurrentValue(quant, value): 

Report current value of the quantity quant  to the Instrument Server and connected 

clients. The function is used to provide feedback to the user when performing slow 

instrument operations, for example when sweeping a magnetic field. 

12.3.5. Testing the driver 

As stated previously, this example driver INI definition file and the 

corresponding Python code are available under Examples in the Instrument Drivers folder. 

To test the driver, move the INI file and the folder with the Python code to reside directly 

in the Instrument Drivers folder. Next, start the Instrument Server and add a new 

instrument. If the driver is defined properly, the Simple Signal Generator should show up in 

the instrument driver list. Select the new driver and although the driver doesn’t perform 

any instrument communication, we still need to provide an address. 

Select “Other” under “Interface” and type any string in the “Address” text box. This to ensure 

that every instrument has a unique address so that the Instrument Server can access 

multiple instances of the Simple Signal Generator, if needed. Finally, click “OK” to close the 

dialog. 



www.keysight.com/find/labber          Page 97 

 

Fig. 12.3. The example instrument driver Simple Signal Generator. 

The new instrument should appear in the main Instrument Server list. Double-click the 

instrument name will bring up the driver configuration window, as shown in Fig. 12.3. To 

test the code, start the driver with the “Start” button and make sure the “Trace”-checkbox 

is checked to view the sinusoid. To control parameters while the driver is running, either 

just update one of the controls, or go to the server window, expand the “Simple Signal 

Generator”-item in the instrument list and use the “Set Value”-button to set a new value. If 

the “Update continuously”-control in the driver dialog is checked, you will see the trace 

change in real time as parameters are modified. 

12.4. Subclassing the VISA driver 
The previous example was a little bit unusual, since no actual instrument communication 

was performed in the driver. A more common situation would be where most 

communication can be handled with simple text-based commands as defined in the 

driver INI configuration file, but where a few advanced quantities need special 

functionality. For these cases, the easiest way to proceed is to subclass 

the VISA_Driver  and only re-implement code for the special cases. The code below shows 

an example of what such a driver would look like: 

from VISA_Driver import VISA_Driver 
 
class Driver(VISA_Driver): 
    """ This class re-implements the VISA driver""" 
 
    def performOpen(self, options={}): 
        """Perform the operation of opening the instrument connection""" 



www.keysight.com/find/labber          Page 98 

        # calling the generic VISA open to make sure we have a connection 
        VISA_Driver.performOpen(self, options=options) 
        # do additional initialization code here... 
        pass 
 
    def performClose(self, bError=False, options={}): 
        """Perform the close instrument connection operation""" 
        # calling the generic VISA class to close communication 
        VISA_Driver.performClose(self, bError, options=options) 
        # do additional cleaning up code here... 
        pass 
 
    def performSetValue(self, quant, value, sweepRate=0.0, options={}): 
        """Perform the Set Value instrument operation. This function should 
        return the actual value set by the instrument""" 
        # check quantity name 
        if quant.name == 'Some_Special_Operation': 
            # special case, perform special code to set value 
            pass 
        else: 
            # otherwise, call standard VISA case 
            value = VISA_Driver.performSetValue(self, quant, value, sweepRate, 
options) 
        return value 
 
    def performGetValue(self, quant, options={}): 
        """Perform the Get Value instrument operation""" 
        # check quantity name 
        if quant.name == 'Some_Special_Operation': 
            # special case, perform special code to get value 
            value = 0.0 
        else: 
            # for all other cases, call generic VISA driver 
            value = VISA_Driver.performGetValue(self, quant, options) 
        return value 
 

Note that both the performOpen  and performClose  functions have to call the generic VISA 

class, to make sure that the communication is properly initiated. 

12.4.1. Helper functions for drivers subclassing 
the VISA driver 

In addition to the helper functions provided by the generic driver object (described in 

Section driverObj above), the VISA_Driver  provides the following helper function: 

 

 



www.keysight.com/find/labber          Page 99 

writeAndLog(sCmd, bCheckError=True): 

The function will send the command string sCmd  to the instrument. 

If bCheckError  is True, an error check is performed after the command has been 

sent. 

write(sCmd, bCheckError=True): 

Same as above, but no entry will be created in the Instrument Log, regardless of the 

log level. See Section logs for more information about the logging feature. 

write_raw(data): 

Write raw data bytes to the instrument, without interpreting termination 

characters, etc. No logging is performed. 

reply = askAndLog(sCmd, bCheckError=True): 

The function will send the command string sCmd  to the instrument and wait for a 

reply. The reply is returned as a text string. If bCheckError  is True, an error check is 

performed after the command has been sent and data has been received. 

reply = ask(sCmd, bCheckError=True): 

Same as above, but no entry will be created in the Instrument Log, regardless of the 

log level. See Section logs for more information about the logging feature. 

reply = read(n_bytes=None, ignore_termination=False): 

Read a total of n_bytes  from the device, ignoring any termination characters. 

If n_bytes  is None , the complete buffer is read. If ignore_termination  is set to True , 

the program will not check for or remove termination characters. 

queryErrors(): 

Check for instrument errors by checking the event status register ( *ESR? ). An 

exception is raised if the instrument reports an error. The check only takes place if 

the item query_instr_errors  in the VISA settings of the INI file is set to True . 

https://labber.org/online-doc/html/Server.html#sec-logs
https://labber.org/online-doc/html/Server.html#sec-logs


www.keysight.com/find/labber          Page 100 

12.5. Support for sweeping 
Some quantities, for example the B-field of a magnet, require the output to be changed 

with a well-defined sweep rate whenever the value is updated. Labber provides supports 

for swept quantities, but such drivers require a few extra configuration settings compared 

to standard drivers. The extra setting are described in the subsection below. For more 

information on how swept experiments are implemented in the Measurement Setup dialog, 

see Section SweepModeSetup. 

12.5.1. Sweeping - Driver definition file 

In addition to the properties listed in in Section Quantities, the driver INI-file of an 

instrument that supports sweeping needs to define the following properties for a 

sweepable quantity: 

sweep_cmd: 

Command used to sweep data. Use “<sr>” for sweep rate or “<st>” for sweep time, 

and “<*>” for the value. Note that sweep rate will be defined in terms of change per 

second or change per minute, as set by the sweep_minute -setting defined below. If 

the instrument does not have a built-in command for sweeping, a similar effect can 

be achieved by repeatedly using the set_cmd  to incrementally change the 

instrument value. To enable this feature, set sweep_cmd  to "***REPEAT SET***" , 

followed by the time interval between setting values (in seconds). If no time 

interval is defined, default is  seconds. 

sweep_check_cmd: 

Command used to check if the instrument is currently in sweep mode. The 

instrument should return True  or 1  if the instrument is sweeping towards a value. 

If sweep_check_cmd  is not defined, the program will determine if an instrument is in 

sweep mode by continuously reading the current value and comparing it against 

the target value with resolution sweep_res , as defined below. 

sweep_res: 

Attainable resolution when sweeping an instrument, in absolute units. Default 

value is , to avoid float rounding errors. This parameter is not used if 

the sweep_check_cmd  is defined. 

https://labber.org/online-doc/html/Drivers.html#sec-quantities


www.keysight.com/find/labber          Page 101 

stop_cmd: 

Command used to stop a sweep. 

sweep_rate: 

Default sweep rate, in rate per second or rate per minute (as set by 

the sweep_minute  parameter defined below). If this value is non-zero, sweeping will 

be turned on automatically for this quantity. Default value is 0 . 

sweep_minute: 

If True , sweep rates are defined in terms of value rate per minute, otherwise in rate 

per second. Default is False  (rate per second). 

sweep_rate_low: 

Minimal sweep rate. Default is 0 . 

sweep_rate_high: 

Maximal sweep rate. Default is +Inf  

Note that the existence of the sweep_cmd -parameter defines whether a quantity is 

sweepable or not. If a quantity is sweepable, the Instrument Server, Instrument Driver and 

the Measurement Setup configuration dialogs will contain a few extra options for 

controlling the sweep rates. If the sweep_cmd -parameter is defined but the set_cmd -

parameter is not, the driver will not allow direct setting of output values. This is useful for 

instruments like magnets, whose output currents must always be swept at a certain rate. 

12.5.2. Sweeping - Python code 

If the sweeping functionality of a driver cannot be implemented using the built-in 

functionality based on the parameters in the driver definition file listed above, it is 

possible to write custom Python code for carrying out the sweeping. To begin with, 

the performSetValue -function for setting an instrument value (described in 

Section PythonCode and Section SubClassVISA above) needs to be implemented to 

support sweeping: 

def performSetValue(self, quant, value, sweepRate=0.0, options={}): 



www.keysight.com/find/labber          Page 102 

When re-implementing the performSetValue -function for a swept quantity, it is 

important that the code inspects the sweepRate  parameter to see if the user wants 

to set the value directly ( sweepRate=0.0 ), or perform sweeping ( sweepRate>0.0 ). Note 

that in sweep mode ( sweepRate>0.0 ), the function should not wait for the sweep to 

finish, since the sweep checking/waiting is handled by the Instrument Server. 

The sweepRate  parameter is defined in terms of change per second or change per 

minute, as set by the sweep_minute  configuration parameter defined in the section 

above. 

In addition to the four standard 

functions  performOpen , performClose , performSetValue  and performGetValue  described in 

Section PythonCode, drivers that support sweeping may also re-implement the following 

functions: 

def checkIfSweeping(self, quant, options={}): 

The function should return True  if the instrument is currently sweeping to the 

target value. The standard implementation will either send the sweep_check_cmd  to 

the instrument or continuously read the current value and compare to the target, 

as described in Section SweepDriver above. 

def performStopSweep(self, quant, options={}): 

This function should stop the current sweep. The default implementation will send 

the stop_cmd  to the instrument, as described in Section SweepDriver above. 

12.6. Controller drivers 
To make a controller driver, start by setting the key controller  in the driver configuration 

file to True . This will make Labber automatically add a few quantities such 

as Period and Input/output signals for handling the controller operation. Note that these 

quantities will be added automatically, and shall not be included in the driver .ini  file. 

For the controller to operate properly, the driver .py  file must implement 

the performGetValue  for the Output value-quantity. The function should typically read the 

value of the Input value control, and then apply the proper control logic to generate the 

output value. For an example of controller driver, see the PID Controller driver provided 

with Labber. 

https://labber.org/online-doc/html/Drivers.html#sec-sweepdriver


www.keysight.com/find/labber          Page 103 

12.7. Hardware arming and triggering 
In hardware trigger mode, log instrument will be armed to wait for a hardware trigger 

before starting to acquire data. The function isHardwareTrig(options)  can be used by both 

instruments outputting and instruments reading values to check if the measurement is in 

hardware trig mode. Instruments that supports hardware arming need to define 

the support_arm  parameter in the General settings of the driver definition file (see 

Section DriverINIGeneral above), and implement the following function: 

def performArm(quant_names, options={}): 

The function should arm the instrument, to make it ready to acquire values for the 

list of quantities defined by quant_names . 

The function performArm  is called before issuing the trigger starting the measurement. See 

Section HardwareTrig for more information how hardware triggering is configured in 

the Measurement program. 

12.8. Hardware looping 
Some instruments can perform looping of values within the instrument hardware. This 

allows for implementing more efficient looping than with a computer, since there will be 

no need for the computer to send new values to the instrument at each step value. For a 

more detailed description of how hardware looping works and how it is configured in 

the Measurement program, see Section HardwareLoop. 

Hardware looping requires that both the instrument outputting and the instrument 

reading values support hardware looping, and that the instrument reading values 

supports hardware arming, as defined by 

the support_hardware_loop  and support_arm  parameters in the General settings of the driver 

definition file (see Section DriverINIGeneral above). 

12.8.1. Hardware looping - outputting values 

In hardware looping mode, the performSetValue  function will be called  times for a step 

sequence containing  points. At the final call, the instrument should be configured to 

start outputting values when a trigger is issued. The function isHardwareLoop(options)  can 

be used to check if the measurement is in hardware loop mode, and the 



www.keysight.com/find/labber          Page 104 

function (index, n_pts) = getHardwareLoopIndex(options)  can be used to get the current 

hardware loop index and the total number of point n_pts . 

12.8.2. Hardware looping - reading values 

In addition to defining the support_hardware_loop  and the support_arm  parameters in the 

driver definition file, the driver Python file needs to implement the performArm  function for 

arming the instrument to acquire multiple values. The number of values to expect is given 

by the output n_pts  of the function (index, n_pts) = getHardwareLoopIndex(options) . After 

the instrument has been armed and a trigger has been sent, the 

function performGetValue  will be called multiple times to acquire the results. 

In the same way as for instruments outputting values, the 

functions isHardwareLoop(options)  and (index, n_pts) = getHardwareLoopIndex(options)  can be 

used to check if the measurement is in hardware loop mode, and to get the current 

hardware loop index and the total number of point n_pts , respectively. 

12.9. Python distribution 
When starting an instrument driver, Labber will launch a dedicated driver process and 

execute its Python code in the new process. By default, Labber will use the default, built-in 

Python distribution, which currently is a 64-bit version of Python 3.6. However, this may 

change to a newer Python version in a future release of Labber. 

12.9.1. Python distribution, 32-bit version 

For compatibility reasons, Labber is also shipped with a 32-bit version of the same Python 

distribution (Windows only), to allow control of older instruments for which only 32-bit 

Windows DLLs/drivers are available. 

To activate the 32-bit Python version for a specific driver, open the driver’s configuration 

window in the Instrument Server, go to the “Communication”-section, click “Show advanced 

interface settings”, and check the “Run in 32-bit mode”-box prior to starting the instrument 

driver. Note that each instance of an instrument driver is running in its own, separate 

process, which makes it is possible to have some drivers run in 32-bit mode, while others 

are running in 64-bit mode. To set an instrument’s default setting to run in 32-bit mode, 

use the use_32bit_mode -flag described in Section DriverINIGeneral above. 



www.keysight.com/find/labber          Page 105 

12.9.2. External Python distribution 

Sometimes it is convenient to use an external Python distribution instead of Labber’s built-

in one. For example, a driver may be relying on a number of external Python packages , 

and it is convenient to install/update those packages using a Python package manager 

instead of manually copying them into the folder location of the Labber driver. 

To use an external Python distribution, open Labber’s Preferences dialog, go to 

the “Advanced”-section and point the “Python distribution” control to the file representing 

the python  executable for a given Python environment. The Python environment must be 

running Python 3.5 or later, and it is recommended to use 

the Anaconda/miniconda package manager for configuring the environment. 

For Anaconda/miniconda distributions, the python  executable is located directly in the root 

of each environment folder ( "pythonw.exe" , Windows), or under "bin/python"  (MacOS 

version). Note that the external Python distribution will be used for all instrument drivers, 

except for the ones running in 32-bit mode (Windows only). 

The external Python distribution must contain the following packages: 

• numpy 

• scipy 

• h5py 

• pycrypto 

• future 

• pyvisa 

To set up a valid environment using Anaconda/miniconda, run the following command from 

the command line: 

conda install pip numpy scipy h5py pycrypto future scikit-learn dill 
pip install pyvisa qtpy scikit-optimize 

For more information about the Anaconda/miniconda Python distributions, 

see https://www.continuum.io/ . 

12.9.3. Troubleshooting, external Python distribution 

If a driver process terminates immediately upon starting or if a dialog pops up with 

a “Broken pipe”-message, there are most likely missing packages in the external Python 



www.keysight.com/find/labber          Page 106 

distribution. To find out which package is missing, quit the Instrument Server and restart it 

from a terminal window to get access to the standard error output. 

• For Windows, open a terminal window, cd  to the location of the Instrument 

Server application, the run the application InstrumentServer-Console.exe  from the 

command line. In addition, the “Python distribution” variable mentioned in 

Section PythonDistExternal above should to point to the file "python.exe"  instead 

of "pythonw.exe" . 

• For macOS, open a terminal window, cd  into the location 

/Applications/Labber/InstrumentServer.app/Contents/MacOS , then run the Instrument Server by 

typing ./InstrumentServer  in the terminal window. 

• On Windows, there have been reports of incompatibilities with certain versions of 

Anaconda. Anaconda3 v. 4.4.0 is the most recent working version to have been tested 

to work. 

 

  



 www.keysight.com/find/labber          Page 107 

 

 

 

  

 
 
 
 
 
 
 

 
APPENDIX: PYTHON API  
 
 

 

 



www.keysight.com/find/labber          Page 108 

Python API 
The Labber Python API (application program interface) provides Python classes and 

functions for controlling instruments in the Labber Instrument Server, for reading and 

writing Labber log files, and for scripting Labber measurements.  

 

Fig A1. Overview and structure of the components in the Labber software package, including the Python 

API.



 

www.keysight.com/find/labber          Page 109 

A1. Installation 
The API is included when installing Labber, and the files are located in the “Script” folder of 

the main program directory. To access the API, add the “Script” folder to your Python path. 

A1.1. Requirements 
The Labber API requires the following Python packages: 

• Python 2.7, or Python 3.4 or later 

• NumPy 

• h5py 

• PyQt4 or PyQt5 

• qtpy 

• msgpack 

• sip 

• future 

 

A1.2. Testing the API 
To test the Labber API installation, execute the following code in a Python console: 

import Labber 
print (Labber.version) 
 

A1.3. Upgrading from earlier versions 
Note that in Labber version 1.1 and later, the ScriptTools module has been moved into 

the Labber  module. To make scripts written for older versions of Labber work with version 

1.1 and later, replace import ScriptTools  with from Labber import ScriptTools . 

  



www.keysight.com/find/labber          Page 110 

A2. Instrument server 
The instrument server API provides functions that allow Python to communicate with the 

Labber Instrument server. The API provides functionality both for communicate and 

control instruments as well as scheduling measurements using the Instrument server’s 

built-in scheduler. 

A2.1. Labber client 
The instrument control API uses a client object to communicate with the Instrument 

server. To initialize the client, use the connectToServer  function. The following example will 

connect to an instrument server on the local computer and list all available instruments. 

import Labber 
# connect to server 
client = Labber.connectToServer('localhost') 
# get list of instruments 
instruments = client.getListOfInstrumentsString() 
for instr in instruments: 
    print(instr) 
# close connection 
client.close() 

A2.2. Scheduling measurements 
The function schedule_measurement  is used to schedule a measurement using the Instrument 

server’s queueing system. For measurement that are scheduled to run immediately, the 

function will wait until the measurement has finished, and return the full path of the final 

measurement file. For measurement that are scheduled for the future, the function will 

return directly without waiting. 

Note that the server timeout should be set to None , to allow the client to wait for a long 

time for the measurement to finish before timing out. The following example illustrates 

the procedure. 

import Labber 
# connect to server 
client = Labber.connectToServer('localhost', timeout=None) 
# schedule experiment, wait to finish 
output_file = client.schedule_measurement('~/Desktop/Test.hdf5') 
print('Final output file:', output_file) 
# close connection 
client.close() 



www.keysight.com/find/labber          Page 111 

A2.3. Connecting to instruments 
To set or read values from an individual instrument, first use the 

function connectToInstrument  of the Labber client object to access the instrument. The 

function will return an instance of a InstrumentClient object, from which the entire 

configuration or individual quantities of the instrument can be set or read. 

The following example will first connect to a Labber Instrument server, and then connect 

to a dc voltage source and a voltmeter using a GPIB interface. Next, it will output voltages 

with the dc source, and measure the corresponding response with the voltmeter. 

import Labber 
import time, numpy as np 
# connect to server 
client = Labber.connectToServer('localhost') 
# connect to specific instruments 
volt_source = client.connectToInstrument('Yokogawa 7651 DC Source', 
              dict(interface='GPIB', address='6')) 
volt_meter = client.connectToInstrument('Agilent 34401 Multimeter', 
             dict(interface='GPIB', address='1')) 
 
# start drivers 
volt_meter.startInstrument() 
volt_source.startInstrument() 
 
# put zero voltage to source and turn on the output 
volt_source.setValue('Voltage', 0.0) 
volt_source.setValue('Output', True) 
 
# do a loop from zero to one volt 
for volt in np.linspace(0.0, 1.0, 11): 
    # set value to voltage source and wait 
    volt_source.setValue('Voltage', volt) 
    time.sleep(0.2) 
    # read value from voltmeter 
    measVolt = volt_meter.getValue('Voltage') 
    # print result 
    print('Set value: %.2f V, measured value: %.2f V' % (volt, measVolt)) 
 
# close client 
client.close() 

See the reference documentation below for more information on functions available in 

the InstrumentClient class. 

A2.4. Blocking vs. non-blocking clients 
Labber supports two types of clients. The standard client type discussed so far is 

a blocking client, which will block program execution while waiting for a response from the 



www.keysight.com/find/labber          Page 112 

server. Blocking clients are typically used in scripts where a number of instrument values 

are set or read in a pre-defined sequential order. 

Function calls to a non-blocking client, on the other hand, will not wait for a response from 

the instrument server. Instead, the client uses a system of callback functions to notify the 

program that a new instrument value has been set or read. The advantage of a non-

blocking client is that the main program thread will not be blocked while waiting for a 

result, and that multiple instrument operations can be performed in parallel. Non-blocking 

clients are typically used in user-interface driven applications, where the dialogs and user-

interface elements need to remain responsive. 

To create a non-blocking client, use the same connectToServer -function described above 

but with the argument wait_for_reply  set to False . The following script will perform the 

same procedure of setting and reading voltages as the blocking-client script shown above, 

but it will do it in a non-blocking framework. Instead of directly returning values, 

the connectToServer , connectToInstrument , setValue  and getValue  functions will 

use callback functions to retrieve values. 

Note that the event handling of the non-blocking client and the callback functionality is 

handled by the Qt framework. 

import Labber 
from qtpy.QtCore import QCoreApplication 
import functools 
import numpy as np 
 
class TestNonBlockClient(): 
    def __init__(self): 
        # keep track of instrument references 
        self.dInstr = dict() 
 
    def connect(self): 
        # connect to server, call 'connectionOpen' upon completion 
        self.client = Labber.connectToServer('localhost', wait_for_reply=False, 
                      callback_open=self.connectionOpen, 
                      callback_network_error=self.on_error, 
                      callback_instrument_error=self.on_error) 
 
    def connectionOpen(self, data): 
        # callback after connection has been established 
        print('Connection open') 
        self.nStart = 0 
        # connect to instruments, call 'connected' upon completion 
        newCallback = functools.partial(self.connected, 'Agilent 34401') 



www.keysight.com/find/labber          Page 113 

        self.client.connectToInstrument('Agilent 34401 Multimeter', 
                                        dict(address='1', interface='GPIB'), 
                                        callback=newCallback) 
        newCallback = functools.partial(self.connected, 'Yokogawa 7651') 
        self.client.connectToInstrument('Yokogawa 7651 DC Source', 
                                        dict(address='3', interface='GPIB'), 
                                        callback=newCallback) 
 
    def on_error(self, message): 
        # print error 
        print('Error: %s.\n\n' % message) 
 
    def connected(self, sHardware, instr): 
        # keep track of instruments 
        self.dInstr[sHardware] = instr 
        # start driver, call 'started' upon completion 
        newCallback = functools.partial(self.started, sHardware) 
        instr.startInstrument(callback=newCallback) 
 
    def started(self, sHardware, data): 
        # check that both instruments have been started 
        self.nStart += 1 
        if self.nStart==2: 
            self.yoko = self.dInstr['Yokogawa 7651'] 
            self.volt = self.dInstr['Agilent 34401'] 
            # set yoko loop 
            self.lLoop = np.linspace(0.0, 1.0, 11) 
            self.nIndex = -1 
            # start loop 
            self.loop() 
 
    def loop(self): 
        # check if looping is done 
        self.nIndex += 1 
        if self.nIndex < len(self.lLoop): 
            # keep looping 
            self.yoko.setValue('Value', self.lLoop[self.nIndex], 
                               callback=self.stepDone) 
        else: 
            print('Finished!') 
 
    def stepDone(self, data): 
        # voltage has been set, read response 
        self.yoko.getValue('Value', callback=self.logDone) 
 
    def logDone(self, measVolt): 
        # print result 
        volt = self.lLoop[self.nIndex] 
        print('Set value: %.2f V, measured: %.2f V' % (volt, measVolt)) 
        # keep looping 
        self.loop() 
 
 
if __name__ == '__main__': 
    # start Qt event loop 



www.keysight.com/find/labber          Page 114 

    app = QCoreApplication([]) 
    # create test object and connect to server 
    test = TestNonBlockClient() 
    test.connect() 
 

A2.5. Function definitions 

Labber.connectToServer(address='localhost', wait_for_reply=True, port=None, timeout=10, callback

_open=None, callback_network_error=None, callback_instrument_error=None, binary_transfer_format

=None) 

Connect to Labber Instrument server and return a Labber client object. 

There are two version of Labber clients, blocking and non-blocking ones. Blocking 

clients will wait for the instrument server to send a reply before returning, whereas 

non-blocking client will return immediately and call callback functions once the 

values are available. 

Parameters 

• address (str, optional) – IP address of Labber Instrument server. Default is 

localhost. 

• wait_for_reply (bool, optional) – If True, the function will return a blocking client. 

Default is True. 

• port (int, optional) – Port number for server communication. Default is 9406. 

• timeout (int or float, optional) – Longest time to wait for the server to reply. 

Default is 10 seconds. 

• callback_open (function, optional) – Callback function called after 

communication has been established. The function should have a single boolean 

argument, which will state if the connection was successful or not. Only 

relevant if wait_for_reply is False, ie for non-blocking clients. 

• callback_network_error (function, optional) – Callback function called in case of 

network error. The function should take a single argument that will contain the 

error message. Only relevant if wait_for_reply is False, ie for non-blocking 

clients. 

• callback_instrument_error (function, optional) – Callback function called in case 

of instrument error. The function should take a single argument that will 

contain the error message. Only relevant if wait_for_reply is False, ie for non-

blocking clients. 



www.keysight.com/find/labber          Page 115 

• binary_transfer_format (bool, optional) – If True, data between the client and 

the server is sent as binary data instead of text. The value must match the Data 

transfer format in the Labber Instrument server preferences. Default is True. 

Returns 

client – Labber client object, either blocking or non-blocking version. 

Return type 

Client object 

Examples 

Open connection to server and list connected instruments. 

>>> import Labber 
>>> client = Labber.connectToServer('localhost') 
>>> instruments = client.getListOfInstrumentsString() 
>>> print(instruments) 
>>> client.close() 

A2.6. Class definitions 
A2.6.1. Blocking client 

The client object should not be initialized directly. Instead, use the connectToServer()-

function defined above. 

classLabber.LabberBlockingClient(sAddress='localhost', port=9406, timeout=10, binary_transfer_f

ormat=None, convert_to_unicode_if_py2=True) 

Bases: object  

Labber client, blocking execution while waiting for server response. 

Parameters 

• sAddress (str, optional) – IP address of Labber Instrument server. Default is 

localhost. 

• port (int, optional) – Port number for server communication. Default is 9406. 

• timeout (int or float, optional) – Longest time to wait for the server to reply. 

Default is 10 seconds. 

• binary_transfer_format (bool, optional) – If True, data between the client and 

the server is sent as binary data instead of text. Default is True. 
close() 



www.keysight.com/find/labber          Page 116 

Close the connection to the server. 

connectToInstrument(sHardware, dComCfg, bCreateNew=False) 

Connect to an instrument object on the instrument server. 

Parameters 

• sHardware (str) – Name of instrument hardware to connect to. 

• dComCfg (dict) – 

Dictionary describing the communication address of the instrument. Either 

the name key or the interface`+`address keys must be defined. The dictionary 

is defined by the following keys: 

Namestr 

Name of instrument. 

interface{‘GPIB’, ‘TCPIP’, ‘USB’, ‘Serial’, ‘VISA’, ‘Other’, ‘None’} 

Communication interface. 

addressstr 

Instrument address string 

startup{‘Set config’, ‘Get config’, ‘Do nothing’} 

Operation to perform at instrument startup. 

lockbool 

If True, instrument will be locked while in use. 

• bCreateNew (bool, optional) – If True, a new instrument will be created if the 

requested one is not already present. Default is False. 

Returns 

instr – Object representing an instrument on the Labber instrument server. 

Return type 

InstrumentClient object 

createInstrument(sHardware, dComCfg) 

Create an instrument on the instrument server. 

Parameters 

• sHardware (str) – Name of instrument hardware to connect to. 



www.keysight.com/find/labber          Page 117 

• dComCfg (dict) – 

Dictionary describing the communication address of the instrument. The 

dictionary is defined by the following keys: 

namestr 

Name of instrument. 

interface{‘GPIB’, ‘TCPIP’, ‘USB’, ‘Serial’, ‘VISA’, ‘Other’, ‘None’} 

Communication interface. 

addressstr 

Instrument address string. 

startup{‘Set config’, ‘Get config’, ‘Do nothing’} 

Operation to perform at instrument startup. 

lockbool 

If True, instrument will be locked while in use. 

 
getListOfInstruments() 

Get a list of instruments present on the Labber instrument server. 

Returns 

instruments – List of instruments on the server. Each element of the 

list is a two-element tuple (name, comcfg), where name is the 

hardware name and comcfg is a dict with communication settings. 

Return type 

list of tuple 

getListOfInstrumentsString() 

Get a list of instruments present on the Labber instrument server. 

Returns 

instruments – List of strings describing instruments on the server. 

Return type 

list of str 



www.keysight.com/find/labber          Page 118 

schedule_measurement(path_to_configuration, output_path=None, priority=False, scheduled=

None, period=None, command_args=[]) 

Schedule measurement using the instrument server queueing system. 

For measurement that are scheduled to run immediately, the function will 

wait until the measurement has finished, and return the full path of the final 

measurement file. For measurement that are scheduled for the future, the 

function will return None directly without waiting. 

Parameters 

• path_to_configuration (str) – Path to Labber measurement configuration to 

run, saved in either .labber, .json or .hdf5 format. 

• output_path (str, optional) – Path for output measurement file. Default is 

None, in which case the resulting output file is put in the Labber database. 

• priority (bool, optional) – Priority in scheduling system. Default is False. 

• scheduled (float, optional) – Scheduled time for measurement to run, in 

number of seconds passed since epoch. Default is None, which schedules 

immediately. 

• period (float, optional) – Periodicity of measurement, measured in seconds. 

Default is None, in which case the measurement will only run once. 

• command_args (list, optional) – Command-line arguments to pass on to the 

Measurement engine. Only used if scheduled and period are None. 

Returns 

Path of output file if scheduled is None and period is None, else None. 

Return type 

str 

A2.6.2. Non-blocking client 

The client object should not be initialized directly. Instead, use the connectToServer()-

function defined above. 

classLabber.LabberClient(callbackNetworkError, callbackInstrError, sAddress='localhost', port=Non

e, timeout=None, callbackOpen=None, callbackMessage=None, parent=None, convert_to_unicode_if_p

y2=True, binary_transfer_format=None) 

Bases: PyQt5.QtCore.QObject  



www.keysight.com/find/labber          Page 119 

Labber client, non-blocking version. 

Parameters 

• callbackNetworkError (function) – Callback function called in case of network 

error. The function should take a single argument that will contain the error 

message. 

• callbackInstrError (function) – Callback function called in case of instrument 

error. The function should take a single argument that will contain the error 

message. 

• sAddress (str, optional) – IP address of Labber Instrument server. Default is 

localhost. 

• port (int, optional) – Port number for server communication. Default is 9406. 

• timeout (int or float, optional) – Longest time to wait for the server to reply. 

Default is 10 seconds. 

• callbackOpen (function, optional) – Callback function called after 

communication has been established. The function should have a single boolean 

argument, which will state if the connection was successful or not. 

• callbackMessage (function, optional) – Callback function for status updates from 

the server. The function should have a single string argument with the status. 

• binary_transfer_format (bool, optional) – If True, data between the client and 

the server is sent as binary data instead of text. Default is True. 

 
close(bForce=False) 

Close the connection to the server. 

Parameters 

bForce (bool, optional) – If True, the connection is shut down without waiting 

for it to close. Default is False. 

connectToInstrument(sHardware, dComCfg, callback, bCreateNew=False) 

Connect to an instrument object on the instrument server. 

Parameters 

• sHardware (str) – Name of instrument hardware to connect to. 

• dComCfg (dict) – 



www.keysight.com/find/labber          Page 120 

Dictionary describing the communication address of the instrument. Either 

the name key or the interface`+`address keys must be defined. The dictionary 

is defined by the following keys: 

namestr 

Name of instrument. 

interface{‘GPIB’, ‘TCPIP’, ‘USB’, ‘Serial’, ‘VISA’, ‘Other’, ‘None’} 

Communication interface. 

addressstr 

Instrument address string 

startup{‘Set config’, ‘Get config’, ‘Do nothing’} 

Operation to perform at instrument startup. 

lockbool 

If True, instrument will be locked while in use. 

• callback (function) – Callback function called after the instruments 

has been created. The first argument will be an InstrumentClient 

object representing the instrument on the Labber instrument server. 

• bCreateNew (bool, optional) – If True, a new instrument will be 

created if the requested one is not already present. Default is False. 

 
createInstrument(sHardware, dComCfg, callback=None) 

Create an instrument on the instrument server. 

Parameters 

• sHardware (str) – Name of instrument hardware to connect to. 

• dComCfg (dict) – 

Dictionary describing the communication address of the instrument. The 

dictionary is defined by the following keys: 

namestr 

Name of instrument. 

interface{‘GPIB’, ‘TCPIP’, ‘USB’, ‘Serial’, ‘VISA’, ‘Other’, ‘None’} 

Communication interface. 

addressstr 



www.keysight.com/find/labber          Page 121 

Instrument address string 

startup{‘Set config’, ‘Get config’, ‘Do nothing’} 

Operation to perform at instrument startup. 

lockbool 

If True, instrument will be locked while in use. 

• callback (function, optional) – Callback function called after the 

instruments has been created. The first argument will be an 

InstrumentClient object representing the instrument on the Labber 

instrument server. 

 
firstCallbackStatus(callbackProgress, callbackCurrentValue, data) 

First callback occurring after the server sends back status updates. The 

function will handle errors and then call the next callback 

getListOfInstruments(callback) 

Get a list of instruments present on the Labber instrument server. 

Parameters 

callback (function) – Callback function called after the list of instruments has 

been retrieved. The first argument will be the list of instruments. 

Returns 

instruments – List of instruments on the server. Each element of the list is a 

two-element tuple (name, comcfg), where name is the hardware name 

and comcfg is a dict with communication settings. 

Return type 

list of tuple 

getListOfInstrumentsString(callback) 

Get a list of instruments present on the Labber instrument server. 

Parameters 

callback (function) – Callback function called after the list of instruments has 

been retrieved. The first argument will be the list of instruments. 



www.keysight.com/find/labber          Page 122 

Returns 

instruments – List of strings describing instruments on the server. 

Return type 

list of str 

A2.6.3. Instrument client 

The InstrumentClient represents an instrument on the server. Note that the 

InstrumentClient object should not be initialized directly, but rather created using 

the connectToInstrument  or createInstrument  functions of a LabberClient object. 

classLabber.InstrumentClient(client, instrRef, ldQuant, dOption, block=True) 

The InstrumentClient is representing an instrument on the server. 

abortCurrentOperation(callback=None) 

Abort current operation, but keep instrument running. 

Parameters 

callback (function, optional) – Callback function called after the instruments 

has been aborted. Only relevant for non-blocking clients. 

arm(quantities, callback=None, options={}) 

Arm instrument to prepare for later hardware-triggered data acquisition 

Parameters 

• quantities (list of str) – Name of quantities that will be acquired when the 

instrument is triggered. 

• callback (function, optional) – Callback function called after the 

instrument has been armed. Only relevant for non-blocking clients. 
disconnectFromInstr(callback=None) 

Disconnect from instrument. 

Parameters 

callback (function, optional) – Callback function called after the instruments 

has been disconnected. Only relevant for non-blocking clients. 



www.keysight.com/find/labber          Page 123 

getInstrConfig(callback=None) 

Get values from the driver. 

Parameters 

callback (function, optional) – Callback function called after the instrument 

config has been retrieved. Only relevant for non-blocking clients. 

Returns 

values – Dictionary with instrument values. The keys are names of 

instrument quantities. Note that only blocking clients will return a value. 

Return type 

dict 

getLocalInitValuesDict() 

Get instrument values as recorded at instrument initialization. 

Returns 

values – Dictionary with instrument values. The dict keys are names of the 

instrument quantities. 

Return type 

dict 

getLocalOptionsDict() 

Get instrument options as recorded at instrument initialization. 

Returns 

options – Dictionary representing instrument options. The dictionary is 

defined by the following keys: 

modelstr 

Instrument model number/name. 

optionslist of str 

List of strings describing installed options. 

Return type 



www.keysight.com/find/labber          Page 124 

dict 

getValue(sQuant, callback=None, callbackProgress=None, callbackCurrentValue=None, optio

ns={}) 

Get value of the specified quantity 

Parameters 

• sQuant (str) – Name of quantity to set. 

• callback (function, optional) – Callback function called after the instrument 

value has been retrieved. Only relevant for non-blocking clients. 

• callbackProgress (function, optional) – Callback function for progress 

updates from the server. The function must take a single argument, which 

will be a float between 0.0 and 1.0 indicating progress. Only relevant for 

non-blocking clients. 

• callbackCurrentValue (function, optional) – Callback function for value 

updates from the server. The function must take a single argument (current 

value), and is used to show the current value during slow operations, like 

averaging. Only relevant for non-blocking clients. 

Returns 

value – Value of the instrument. Note that only blocking clients will return a 

value. 

Return type 

float, bool or numpy array. 

isRunning(callback=None) 

Check if instrument driver is running. 

Parameters 

callback (function, optional) – Callback function called after the instruments 

has been checked. Only relevant for non-blocking clients. 

Returns 

isRunning – True if instrument is running. Note that only blocking clients 

will return a value. 

Return type 



www.keysight.com/find/labber          Page 125 

bool 

setInstrConfig(dValues={}, callback=None, always_update_all=True) 

Send values to the driver. 

Parameters 

• dValues (dict) – Dictionary with new values. The keys are names of 

instrument quantities. 

• callback (function, optional) – Callback function called after the 

instrument config has been set. Only relevant for non-blocking clients. 

• always_update_all (bool, optional) – If True, the instrument settings are 

updated even if values have not changed compared to the local settings 

stored in the driver. 

Returns 

values – Dictionary with actual values. The keys are names of instrument 

quantities. 

Return type 

dict. Note that only blocking clients will return a value 

setValue(sQuant, value, rate=0.0, wait_for_sweep=True, callback=None, callbackProgress=N

one, callbackCurrentValue=None, options={}) 

Set new value to the specified quantity 

Parameters 

• sQuant (str) – Name of quantity to set. 

• value (float, bool or numpy array) – New value. 

• rate (float, optional) – Sweep rate. 

• wait_for_sweep (bool, optional) – If True and rate is non-zero, the 

instrument is waiting for a sweep to finish. 

• callback (function, optional) – Callback function called after the 

instrument value has been set. Only relevant for non-blocking clients. 

• callbackProgress (function, optional) – Callback function for progress 

updates from the server. The function must take a single argument, 

which will be a float between 0.0 and 1.0 indicating progress. Only 

relevant for non-blocking clients. 



www.keysight.com/find/labber          Page 126 

• callbackCurrentValue (function, optional) – Callback function for value 

updates from the server. The function must take a single argument 

(current value), and is used to show the current value during slow 

operations (sweeping). Only relevant for non-blocking clients. 

Returns 

value – Actual value of the instrument. Note that only blocking clients will 

return a value. 

Return type 

float, bool or numpy array. 

startInstrument(dOption=None, callback=None) 

Start the instrument. 

Parameters 

• dOption (dict, optional) – 

Dictionary representing instrument options. The dictionary is defined by 

the following keys: 

modelstr 

Instrument model number/name. 

optionslist of str 

List of strings describing installed options. 

• callback (function, optional) – Callback function called after the 

instruments has been started. Only relevant for non-blocking clients. 

 
stopInstrument(bForceQuit=False, callback=None) 

Stop the instrument. 

Parameters 

• bForceQuit (bool, optional) – If True, the instrument is shut down without 

waiting for it to close. Default is False. 

• callback (function, optional) – Callback function called after the 

instruments has been stopped. Only relevant for non-blocking clients. 

 
waitForSweep(sQuant, value=None, callback=None, options={}, callbackCurrentValue=None) 



www.keysight.com/find/labber          Page 127 

Wait for swept instrument to reach final point or certain value. 

A3. Log files 
The LogFile class provides functionality for reading and writing data from Labber log files. 

A3.1. Reading data from Labber 
Labber log files are accessed using the LogFile class, which contain a number of functions 

for reading and writing data (see class definition below). A LogFile object is created by 

passing the path to a Labber log file as the first argument. 

A3.1.1. Log information 

A Labber log file contains both instrument settings and measured data, as well as 

metadata information from the database such as User, Tags, Project and Comment. The 

following example will print basic information about the log file TestLog.hdf5: 

import Labber 
 
f = Labber.LogFile('TestLog') 
print('Number of entries:', f.getNumberOfEntries()) 
 
print('Step channels:') 
step_channels = f.getStepChannels() 
for channel in step_channels: 
    print(channel['name']) 
 
print('Log channels:') 
log_channels = f.getLogChannels() 
for channel in log_channels: 
    print(channel['name']) 
 
print('User:', f.getUser()) 
print('Tags:', f.getTags()) 
print('Project:', f.getProject()) 
print('Comment:', f.getComment()) 

The LogFile class also contains functions for setting log metadata, see the class 

definition below. 

A3.1.2. Log data 

A Labber log file contains data from one or multiple channels. The data is organized into 

log entries, where each entry contains a one-dimensional vector of values for each channel. 

The entries correspond to the traces shown in the Labber Log Viewer program. 



www.keysight.com/find/labber          Page 128 

The LogFile class provides a number of functions for accessing the data, as illustrated in 

the example below: 

import Labber 
 
f = Labber.LogFile('TestLog') 
 
# get values of all channels for a specific entry (in this case first entry) 
d = f.getEntry(0) 
for (channel, value) in d.items(): 
    print(channel, ":", value) 
 
# get entry as x,y data, let Labber determine which channels to read 
(x,y) = f.getTraceXY() 
 
# get data for all entries for a specific channel as a 2D numpy array 
data = f.getData('Voltage') 
 
# get last recorded value of a specific channel in the measurement config 
# this function also works for channels that are not step items 
value = f.getChannelValue('Integration time') 
 
# get last recorded values of all channels 
# useful for extracting all instrument settings 
value = f.getChannelValuesAsDict() 

For more information on the various class methods, see the class definition below. 

A3.2. Creating Labber log files 
The API provides functionality for creating Labber log files that can be opened by the 

Labber Log Browser and Log Viewer programs. This makes it possible to add custom data to 

the Labber database, such as simulation results or data acquired outside of the 

Labber Measurement program. 

The following lines of Python code will create a log file with sinusoid signals with different 

frequencies in the Labber database. 

import Labber 
import numpy as np 
 
# create step data 
vTime = np.linspace(0,1,501) 
vFreq = np.linspace(1,10,100) 
# define step channels 
lStep = [dict(name='Time', unit='s', values=vTime), 
         dict(name='Frequency', unit='Hz', values=vFreq)] 
# define log channels 
lLog = [dict(name='Signal', unit='V', vector=False)] 



www.keysight.com/find/labber          Page 129 

 
# create log file 
f = Labber.createLogFile_ForData('TestSinusoid', lLog, lStep) 
 
# add log entries 
for freq in vFreq: 
    data = {'Signal': np.sin(2*np.pi*freq*vTime) } 
    f.addEntry(data) 

Note that log files created with the function createLogFile_ForData  can only be used with 

the Log Browser and Log Viewer programs. It is not possible to open or run such a file in the 

Labber Measurement program. 

A3.3. Function definitions 

Labber.getTraceDict(value=[], x0=0.0, dx=1.0, x1=None, logX=False, x=None) 

Create a dict with metadata for Labber (x,y) traces. 

Parameters 

• value (list or np.array) – Vector of y-values for trace data. 

• x0 (float, optional) – x-value for first data point in trace vector. Default is 0 

• dx (float, optional) – Step size for x data. If specified, the x-vector starts at “x0”, 

and every subsequent point is spaced by “dx”. Default is 1 

• x1 (float, optional) – x-value for last data point in trace vector. If specified, the 

“dx” parameter is ignored, and the x-vector will be a linear ramp between “x0” 

and “x1”. 

• logX (bool, optional) – If True, the values between x0 and x1 are interpolated 

logarithmically. Only valid if “x0” and “x1” are specified. 

• x (list or np.array, optional) – Vector of x-value to match the y-values. The input 

must have the same number of elements as the “values” parameter. If specified, 

the values of “x0”, “dx”, “x1” and “logX” are ignored. 

Returns 

d – Python dict with values and metadata for describing a (x,y) trace. 

Return type 

dict 

Labber.createLogFile_ForData(name, log_channels, step_channels=[], use_database=True) 

Create a log file for custom data storage in the Log database. 



www.keysight.com/find/labber          Page 130 

Parameters 

• name (str) – Name or path of log file. 

• log_channels (list of dict) – 

List of dict describing the log channels. The list corresponds to the log channels 

in the Measurement dialog. The dictionary is defined by the following keys: 

namestr 

Name of channel. 

unitstr, optional 

Unit of channel. 

complexbool, optional 

If True, the channel contains complex data. Default is False. 

vectorbool, optional 

If True, the channel contains vector data. Default is True. 

x_namestr, optional 

Label of the x-axis for vector data. Default is “Index”. 

x_unitstr, optional 

Unit of x-values for vector data. 

• step_channels (list of dict, optional) – 

List of dict describing the step channels. The list corresponds to the Step 

sequence in the Measurement dialog. If step_values is left undefined, the 

resulting log file will contain a collection of traces without a uniform pre-

definied dimensionality. The dictionary is defined by the following keys: 

namestr 

Name of channel. 

values1D numpy array 

Step values for step channels. The length of the vector defines the dimensionality 

of the data in the resulting log file. 

unitstr, optional 

Unit of channel. 

combo_defslist of str, optional 



www.keysight.com/find/labber          Page 131 

Enumerator labels for quantity. If specified, Labber will define the channel to be of 

“COMBO” datatype, and the “values” data must be integer values between 0 and 

len(combo_defs) - 1. 

• use_database (bool, optional) – If True, the log file is put in the central log 

database, otherwise the path set by the log name. Default is True. 

Returns 

log – LogFile object representing the newly created log. 

Return type 

LogFile object 

Examples 

Example 1: Create log without step values or fixed dimensions. Note that entries 

do not need to have the same length. 

>>> import Labber 
>>> lLog = [dict(name='x'), dict(name='y')] 
>>> l = Labber.createLogFile_ForData('TestLog', lLog) 

To add two entries to the log defined above: 

>>> x = np.linspace(0,1,501) 
>>> data = {'x': x, 'y': np.sin(2*np.pi*5*x) } 
>>> l.addEntry(data) 
>>> x = np.linspace(-1.2,1.2,201) 
>>> data = {'x': x, 'y': x**2 } 
>>> l.addEntry(data) 

Example 2: Create log file using pre-defined step values. In this example, the data 

dimensions are defined by the step channels, and all entries need to have the same 

length as the first step channel. Note the the presence of vector=False  for 

the Signal channel, which notifies that the entry size is defined by the first step 

channel. 

>>> import Labber 
>>> vTime = np.linspace(0,1,501) 
>>> vFreq = np.linspace(1,10,10) 
>>> chTime = dict(name='Time', unit='s', values=vTime) 
>>> chFreq = dict(name='Frequency', unit='Hz', values=vFreq) 
>>> chSig  = dict(name='Signal', unit='V', vector=False) 
>>> f = Labber.createLogFile_ForData('TestData', [chSig], [chTime, chFreq]) 

To add data to the log defined above: 

>>> for freq in vFreq: 



www.keysight.com/find/labber          Page 132 

>>>     data = {'Signal': np.sin(2*np.pi*freq*vTime)} 
>>>     f.addEntry(data) 

Example 3: Create log file using pre-defined step values, but allow individual 

entries to have different lengths. Compared to Example 2 above, we use the 

“getTraceDict” function to define the x-values for the vector-valued data. 

>>> import Labber 
>>> import numpy as np 
>>> frequencies = np.linspace(1, 10, 10) 
>>> channel_f = dict(name='Frequency', unit='Hz', values=frequencies) 
>>> channel_y = dict(name='Signal', unit='V', x_name='Time', x_unit='s') 
>>> f = Labber.createLogFile_ForData('TestData', [channel_y], [channel_f]) 

To add data to the log defined above: 

>>> t = np.linspace(0, 1, 501) 
>>> for freq in frequencies: 
>>>     y = np.sin(2 * np.pi * freq * t) 
>>>     trace_dict = Labber.getTraceDict(y, x0=t[0], x1=t[-1]) 
>>>     data = {'Signal': trace_dict} 
>>>     f.addEntry(data) 

A3.4. LogFile class 

classLabber.LogFile(file_name, instrument_units=False) 

Bases: object  

The class handles reading and writing data to and from Labber log files. 

Parameters 

• file_name (str) – Labber hdf5 file with log data. 

• instrument_units (bool, optional) – If True, data from the log file is returned in 

instrument units instead of physical units. Default is False. 
addEntry(data) 

Add one entry to log file. 

Parameters 

data (dict) – 

Dictionary with data. The keys should match the channel names, and the values 

should be 1D numpy arrays or dicts with Labber (x,y) trace data created with the 

“getTraceDict”-function 



www.keysight.com/find/labber          Page 133 

For scalar channels, the length of the array must match the size of the innermost 

step loop. 

If the log contains channels with both scalar and vector data, the dict value for 

channels that contain vector data should be an iterable with numpy arrays or trace 

dicts. 

getChannelValue(channel_name) 

Get value of a channel at the end of the measurement. 

Parameters 

channel_name (str) – Name of channel for getting value. 

Returns 

value – Channel value as recorded after finishing the measurement. 

Return type 

float, string, or dict 

getChannelValuesAsDict(include_all_quantities=False) 

Get value of all channels at the end of the measurement. 

Parameters 

include_all_quantities (bool) – If False, only channels defined in the 

Measurement dialog are returned. Otherwise, all quantities of all 

instruments are included 

Returns 

channels – Dict with all channel values. The key is the channel name. 

Return type 

dict 

getComment(log=-1) 

Get comment from log file. 

Parameters 

log (int, optional) – Log number within the log file. Default is -1 (last log) 



www.keysight.com/find/labber          Page 134 

Returns 

comment – String with comment 

Return type 

str 

getData(name=None, entry=None, inner=None, log=-1) 

Retrieve data from the log file and return it as a numpy array. 

Parameters 

• name (str, optional) – Name or index of the channel with data. If None, 

data for the first log channel will be returned. 

• entry (int or iterable, optional) – Entry number within log to retrieve. If 

None, all elements will be returned. 

• inner (int or iterable, optional) – Index of the inner-most loop values to 

retrieve. If None, all elements will be returned. 

• log (int, optional) – Log number within the log file. Default is -1 (last log) 

Returns 

data – Depending on the input arguments, the output data will be a floating 

point number or a one- or two-dimensional numpy array. 

Return type 

float or np.array 

getEntry(entry=-1) 

Retrieve an entry from the log file and return a dict with values. 

Parameters 

entry (int, optional) – Entry number to retrieve, as shown in the Log Viewer. 

Default is -1, which will get the last trace in the file. 

Returns 

d – Dictionary with entry data. Keys are the channel names, the values are 

floats, numpy arrays or dicts with vector data. In addition, the dictionary 

contains a key “timestamp”, which contains a timestamp (seconds since 

epoch) for the entry. 



www.keysight.com/find/labber          Page 135 

Return type 

dict 

getFilePath(tags) 

Get path of hdf5 log file. 

Returns 

path – Full path and name of hdf5 log file. 

Return type 

str 

getLogChannels() 

Get log channels in the log file. 

Returns 

log_channels – List of dicts representing log channels. The dictionaries 

contain the following keys: 

namestr 

Name of channel. 

unitstr 

Unit of channel. 

complexbool 

If True, the channel contains complex data. 

vectorbool 

If True, the channel contains vector data. 

Return type 

list of dict 

Examples 

Get list of log channels from the log file TestLog. 

>>> import Labber 



www.keysight.com/find/labber          Page 136 

>>> l = Labber.LogFile('TestLog') 
>>> print(l.getLogChannels()) 
[{'name': 'Signal', 'unit': 'V', 'complex': False, 'vector': False}] 
 

getNumberOfEntries(name=None, log=None) 

Get number of entries in the log file for the given channel. 

Parameters 

• name (str, optional) – Name of channel for data count. Default is first log 

channel. 

• log (int, optional) – Log configuration number within the log file. Default 

is None, which will count all entries for all logs. 

Returns 

n – Number of entries. 

Return type 

int 

getNumberOfLogs() 

Get number of individual log configurations in the log file. 

Returns 

n – Number of log configurations. 

Return type 

int 

getProject() 

Get project name from log file. 

Returns 

project – String with project name. 

Return type 

str 

getStepChannels() 

Get step channels in the log file. 



www.keysight.com/find/labber          Page 137 

Returns 

log_channels – List of dicts representing step channels. The dictionary 

contains the following keys: 

namestr 

Name of channel. 

unitstr 

Unit of channel. 

values1D numpy array 

Step values for step channels. 

complexbool 

If True, the channel contains complex data. Always False for step channels. 

vectorbool 

If True, the channel contains vector data. Always False for step channels. 

Return type 

list of dict 

Examples 

Get list of step channels from the log file TestLog 

>>> import Labber 
>>> l = Labber.LogFile('TestLog') 
>>> print(l.getStepChannels()) 
[{'name': 'Time', 'unit': 's', 'complex': False, 'vector': False, 
  'values': array([ 0.   ,  0.002,  ..., 0.998, 1.   ])}, 
 {'name': 'Frequency', 'unit': 'Hz', 'complex': False, 'vector': False, 
  'values': array([ 1., 5., 10.])}] 

getTags() 

Get tag list from log file. 

Returns 

tags – List of strings with tags. 

Return type 



www.keysight.com/find/labber          Page 138 

list of str 

getTraceXY(y_channel=None, x_channel=None, entry=-1) 

Retrieve a trace with (x,y) data from the log file . 

Parameters 

• y_channel (str or int, optional) – Name or log index of the channel with y-

data. Default is first log channel. 

• x_channel (str or int, optional) – Name or step index of the channel with x-

data. Default is first step channel. 

• entry (int, optional) – Entry number to retrieve, as shown in the Log 

Viewer. Default is -1, which will get the last trace in the file. 

Returns 

(x,y) – A tuple with x and y data as 1-d numpy arrays. 

Return type 

tuple 

getUser() 

Get user from log file. 

Returns 

name – String with user name. 

Return type 

str 

setComment(comment, log=-1, set_all=True) 

Set comment in log file. 

Parameters 

• comment (str) – String with comment. 

• log (int, optional) – Log number within the log file. Default is -1 (last log). 

• set_all (bool, optional) – Set comment of all log numbers within the log 

file. Default is True. 
setProject(project) 

Set project name in the log file. 



www.keysight.com/find/labber          Page 139 

Parameters 

project (str) – String with project name. 

setTags(tags) 

Set list of tags in the log file. 

Parameters 

tags (list of str) – List of string with tags. 

setUser(name) 

Set user name in the log file. 

Parameters 

name (str) – String with user name. 

  



www.keysight.com/find/labber          Page 140 

A4. Script tools 
The helper functions in the ScriptTools module are designed for repeatedly performing 

Measurements that each contain one-dimensional sweeps, and where one or multiple 

parameters of the Measurement configurations are updated between each measurement. 

A4.1. Initialization 
The ScriptTools functions call the Measurement executable for performing the 

measurements. Before the tools can be used, the path to the executable must be set using 

the function setExePath() defined below. 

Note that in Labber version 1.1 and later, the ScriptTools module has been moved into 

the Labber  module. To make scripts written for older versions of Labber work with version 

1.1 and later, replace import ScriptTools  with from Labber import ScriptTools . 

A4.2. Example 
The ScriptTools functions are best explained by an example, which we’ll take from the 

domain of superconducting qubits. For the purpose of this example, we can view the qubit 

as a slightly anharmonic oscillators whose frequency tunes with applied magnetic flux. 

The qubit is read out by coupling it to microwave resonators, and the coupling is arranged 

in a way that changing the qubit frequency will cause a slight shift of the resonator 

frequency. 

Now, say that we want to probe the qubit frequency as a function of applied flux. The 

difficulty is that the changing the flux will affect both the qubit and the resonator 

frequencies, which means that we cannot use a fixed-frequency read-out tone. Instead, 

we need to implement the following procedure: 

1. Set new magnetic flux value. 

2. Measure resonator. 

3. Find resonance frequency of resonator. 

4. Measure qubit, while keeping the resonator at resonance frequency. 

5. Repeat for all values of magnetic flux. 

 

The Python code below shows an example script for performing the sequence described 

above. The script assumes that the user has created two Measurement configurations, one 



www.keysight.com/find/labber          Page 141 

for measuring the resonator, and one for measuring the qubit, and that 

both Measurement configurations have a single-valued step item called ’Flux bias’ that 

control the magnetic flux. 

import os 
import numpy as np 
 
from Labber import ScriptTools 
 
# define list of points 
vFlux = np.linspace(-1E-3, 1E-3, 101) 
 
# define measurement objects 
sPath = os.path.dirname(os.path.abspath(__file__)) 
MeasResonator = ScriptTools.MeasurementObject(\ 
                os.path.join(sPath, 'TestResonator.hdf5'), 
                os.path.join(sPath, 'TestResonatorOut.hdf5')) 
MeasQubit = ScriptTools.MeasurementObject(\ 
            os.path.join(sPath, 'TestQubit.hdf5'), 
            os.path.join(sPath, 'TestQubitOut.hdf5')) 
# set the Primary channel that defines the third data dimension 
MeasResonator.setPrimaryChannel('Flux bias') 
MeasQubit.setPrimaryChannel('Flux bias') 
 
# go through list of points 
for n1, value_1 in enumerate(vFlux): 
    print('Flux [mA]:', 1000*value_1) 
    # set flux bias 
    MeasResonator.updateValue('Flux bias', value_1) 
    MeasQubit.updateValue('Flux bias', value_1) 
    # measure resonator 
    (x,y) = MeasResonator.performMeasurement() 
    # for this example, y is complex, take absolute value 
    y = abs(y) 
    # look for peak position 
    print('Resonator position [GHz]:', x[np.argmax(y)]/1E9) 
    # set new frequency position 
    MeasQubit.updateValue('RF - Frequency', x[np.argmax(y)]) 
    # measure qubit 
    (x,y) = MeasQubit.performMeasurement() 

A4.3. Function definitions 

Labber.ScriptTools.setExePath(path) 

Set path to the Measurement program, must be done before running scripts 

Parameters 

path (str) – Path to Measurement.exe program. On Windows, the path is typically 

‘C:Program FilesLabberProgram’. 



www.keysight.com/find/labber          Page 142 

Labber.ScriptTools.load_scenario_as_dict(file_name) 

Load Labber measurement scenario from binary .labber or .json file 

Parameters 

file_name (str) – Path to Labber measurement scenario file (.labber or .json). 

Returns 

d – Python dict describing measurement scenario. 

Return type 

dict 

Labber.ScriptTools.save_scenario_as_binary(config, file_name) 

Save Labber measurement scenario as binary .labber file 

Parameters 

• config (dict) – Python dict describing Labber measurement scenario. 

• file_name (str) – Path to output file. 

 

Labber.ScriptTools.save_scenario_as_json(config, file_name) 

Save Labber measurement scenario as .json file 

Parameters 

• config (dict) – Python dict describing Labber measurement scenario. 

• file_name (str) – Path to output file. 

 

A4.4. MeasurementObject class 

classLabber.ScriptTools.MeasurementObject(sCfgFileIn, sCfgFileOut) 

Bases: object  

Class for updating measurement objects and running experiments 

Parameters 

• sCfgFileIn (str) – Path of template config file that defines the Measurement. 



www.keysight.com/find/labber          Page 143 

• sCfgFileOut (str) – Path to output file that will be created when running the 

Measurement. This should typically be different from the template file, since 

the dimensionally of the configuration may change as data is added. 

 
performMeasurement(return_data=True, use_scheduler=True) 

Perform measurement and return (x,y)-tuple. 

The function will start the application Measurement.exe. 

Parameters 

• return_data (bool, optional) – If True, the function will return a tuple with (x,y) 

data (see below). If False, the function will return the actual path of the output 

data file. Default is True. 

• use_scheduler (bool, optional) – If True, the measurement will be executed using 

Labber’s internal scheduler. If False, a separate instance of the Measurement 

program will be launched to run the measurment. Default is False. 

Returns 

(x,y) – A tuple with x and y data as 1-d numpy arrays. The x-data is taken from the 

first step channel, the y-data is taken from the first log channel. 

Return type 

tuple 

rearrangeLog(channel_name, *extra_arg) 

Re-arrange a log with N entries of length M to a 2D log with dim (N, M) 

The “channel_name” determines which data to use when defining the second 

dimension. It is also possible to rearrange into a multi- dimensional log by 

specifying multiple channels, but if so, lists of step values for each dimension need 

to be specified as well. For example, to rearrange a log with 6 entries into a multi-

dimensional log with 3*2 entries, use: rearrangeLog(“Channel 1”, [1.0, 2.0, 3.0], 

“Channel 2”, [1.0, 2.0]) 

Parameters 

• channel_name (str) – Path to log file. 



www.keysight.com/find/labber          Page 144 

• values (list of float, optional) – Step value of channel_name. If not specified, the 

values will be taken from log file. 
setPrimaryChannel(channel_name) 

Specify the primary channel name. 

Values of all other updated channels will be defined by look-up tables relative to 

the primary channel values. 

Parameters 

channel_name (str) – Name of master channel. 

setOutputFile(filename) 

Set output file when performing the measurement 

Parameters 

filename (str) – Path to output file. 

updateValue(channel_name, value, itemType='SINGLE') 

Update a single value in the config file. 

The values are kept track of internally until the Measurement.exe program is 

called. 

Parameters 

• channel_name (str) – Name of channel to update. 

• value (float) – New value to set to channel. 

• itemType (str, optional) – Step item parameter to set, must be one of { single , 

start , stop , center , span , step , n_pts  }. Default is single . 

 

  



www.keysight.com/find/labber          Page 145 

A5. Configurations 
The classes and the function in the config module allow Labber Measurement scenarios to 

be modified or created from scratch. In most cases, the recommended workflow is to 

create a template scenario in the Measurement program with all the instruments and 

signal connections used in the setup, then load the scenario into the API and use the 

functions add_step and add_log which channels to step over or log. 

A5.1. Example 
A Labber measurement scenario is represented by an instance of the class Scenario , which 

is described in more detail in the Scenario class section below. The Scenario  object 

contains lists of Instrument , Channel , StepItems  and log channel objects, as well as a number 

of settings and other configuration parameters. 

We illustrate the process of creating a scenario with an example. The goal is to create a 

measurement that will generate a sine waveform with the Simple Signal Generator driver, 

send it to the Signal demodulation driver over a signal connection, then perform the 

demodulation and run the experiment for a few different values of the signal and 

demodulation frequency. 

A5.1.1. Example - Full code 

The code used to generate the example scenario is shown below: 

from Labber import Scenario 
import numpy as np 
 
# create and add instruments 
s = Scenario() 
instr_signal = s.add_instrument('Simple Signal Generator', name='Sine') 
instr_demod = s.add_instrument('Signal Demodulation', name='Demod') 
 
# set a few instrument settings 
instr_demod.values['Use phase reference signal'] = False 
instr_demod.values['Length'] = 1.0 
 
# add signal connections between channels 
s.add_connection('Sine - Signal', 'Demod - Input data') 
 
# add step items, values can be defined with np array or keywords 
s.add_step('Sine - Frequency', np.linspace(0, 10, 51)) 
s.add_step('Demod - Modulation frequency', start=1, stop=9, step=4) 
 



www.keysight.com/find/labber          Page 146 

# add log channels 
s.add_log('Demod - Value') 
 
# set metadata 
s.comment = 'Comment for log' 
s.tags.project = 'My project' 
s.tags.user = 'John Doe' 
s.tags.tags = ['Tag 1', 'Tag 2/Subtag'] 
 
# set timing info 
s.wait_between = 0.01 
 
# set log name and save to disk 
s.log_name = 'Test signal demodulation' 
s.save('demodulation_scenario') 

The example will output a file demodulation_scenario.labber, which can then be opened in 

the Measurement program or executed using the ScriptTools API. 

A5.1.2. Example - Detailed description 

To describe the various function in more detail, we go through the example line-by-line. 

We start by creating an empty Scenario and printing the resulting object: 

>>> from Labber import Scenario 
>>> s = Scenario() 
>>> print(s) 
Scenario: 
    instruments: [<Instrument>], #0 items 
    channels: [<Channel>], #0 items 
    step_items: [<StepItem>], #0 items 
    log_channels: [<str>], #0 items 
    tags: Tags: 
        project: 
        user: 
        tags: [<str>], #0 items 
    settings: Settings: 
        send_in_parallel: True 
        log_parallel: True 
        arm_trig_mode: False 
        trig_channel: 
        hardware_loop: False 
        limit_hardware_looping: False 
        n_items_hardware_loop: 1 
        update_instruments_if_unchanged: True 
        only_send_signal_if_updated: True 
        data_compression: 4 
        logger_mode: False 
    optimizer: Optimizer: 
        method: Nelder–Mead 
        max_evaluations: 200 
        minimization_function: y[0] 



www.keysight.com/find/labber          Page 147 

        target_value: -inf 
        relative_tolerance: inf 
        method_settings: {} 
    log_name: 
    comment: 
    wait_between: 0.0 
    time_per_point: 0.1 
    version: 1.8 

The print statement lists the properties of the Scenario object. These properties fully 

configure the scenario, and are further described in the Scenario class description in 

the Scenario class section below. 

The properties can be directly modified using standard Python notation. For example, the 

following lines will modify the log comment and the delay setting step channels and 

measureing log channels in a measurement. 

>>> s.comment = 'This is a log comment' 
>>> s.wait_between = 0.01 

The first thing we want to do is to add a few instruments to the scenario. This can be done 

by creating an Instrument  objects and directly setting it to the instruments  property of 

the Scenario  object. However, it is easier to use the helper function add_instrument() : 

>>> instr_signal = s.add_instrument('Simple Signal Generator', name='Sine') 
>>> instr_demod = s.add_instrument('Signal Demodulation', name='Demod') 

This will create the two instruments and add them to the scenario. To modify the settings 

of the instruments, we directly update the values  property of the Instrument  object: 

>>> instr_demod.values['Use phase reference signal'] = False 
>>> instr_demod.values['Length'] = 1.0 

Note that the key must match the instrument quantity as defined in the driver definition 

file. Also note that any undefined quantity values will be initiated to the default values as 

given in the driver definition file. 

The next step is to set the signal connection between the sine waveform and the 

demodulation input. We do this with the helper function add_connection() : 

>>> s.add_connection('Sine - Signal', 'Demod - Input data') 

We haven’t explicitly defined the channels Sine - Signal  and Demod - Input data  used in 

the signal connection above. The default name for channels follow the 

convention <instrument name> - <quantity> , but it is straightforward to change the name by 

retrieving a channel with the get_channel() -function and then changing its name  property. 



www.keysight.com/find/labber          Page 148 

At this point, we are ready to set up the channels to step, and the log channels to measure. 

This is done with the add_step()  and add_log()  functions: 

>>> s.add_step('Sine - Frequency', np.linspace(0, 10, 51)) 
>>> s.add_step('Demod - Modulation frequency', start=1, stop=9, step=4) 
>>> s.add_log('Demod - Value') 

Note that the step values can be defined either as a numpy array, or using the 

keywords single , start , stop , step , n_pts  of the StepItem as defined in Section Scenario 

class below. 

The final thing we need to do is to set the log name and save the scenario to disk: 

>>> s.log_name = 'Test signal demodulation' 
>>> s.save('demodulation_scenario') 

The resulting file can then be opened in the Measurement program or executed using 

the ScriptTools API. 

A5.2. Scenario class 
The Scenario class contains both properties and helper functions for modifying the 

configuration. 

A5.2.1. Labber.Scenario 

classlabber.config.scenario.Scenario(file_name=None) 

Class representing a Labber scenario. 

The class can be instantiated either as an empty scenario or by loading the Labber 

scenario provided in the file_name input parameter. 

Parameters 

• instruments (Instrument, list of) – Configuration of instruments in use in the 

scenario. 

• channels (Channel, list of) – Channels used in the scenario. 

• step_items (StepItem, list of) – Step items defining channels and values to step or 

sweep over. 

• log_channels (str, list of) – List of channels to be measured at each step. 

• tags (Tags) – Tags associated with the Labber scenario. 

• settings (Settings) – Measurement settings specific to the scenario. 

https://labber.org/online-doc/api/Configuration.html#scenario-class
https://labber.org/online-doc/api/Configuration.html#scenario-class


www.keysight.com/find/labber          Page 149 

• optimizer (Optimizer) – Optimizer settings. 

• log_name (str) – Name of log 

• comment (str) – Comment for scenario 

• wait_between (float) – Time to wait between setting step items and measuring 

log channels 

• time_per_point (float) – Estimate for time per point, used to calculate duration 

• version (str) – Version of Labber used to create scenario. 
__init__(file_name=None) 

Initialize scenario 

Parameters 

file_name (str, optional) – File with scenario to load, eithers in .json or .labber 

format. 

add_connection(source, target) 

Add signal connection between two channels in the scenario. 

Parameters 

• source (str or Channel) – Source channel for connection. 

• target (str or Channel) – Target channel for connection. 
add_instrument(driver_name, **kwargs) 

Add instrument to scenario. 

Optional keyword arguments are passed on to the Communication object 

constructor. 

Parameters 

driver_name (str) – Name of driver, must match name in driver database. 

Returns 

Newly created instrument. 

Return type 

Instrument 

add_log(channel, index=None) 

Add log item to scenario. 



www.keysight.com/find/labber          Page 150 

Parameters 

• channel (str och Channel) – Channel for log item. The channel doesn’t need to be 

defined. 

• index (int) – Index of new log item in list. If not given, item is added to end. 

 
add_step(channel, values=None, index=None, **kwargs) 

Add step item to scenario. 

If the parameter ‘values’ is not given, additional keywords arguments can be used 

to initialize the range defining the step item. 

Parameters 

• channel (str och Channel) – Channel for step item. The channel doesn’t need to 

be defined. 

• values (numpy array, list of float, or float) – Values for step item. 

• index (int) – Index of new step item in list. If not given, item is added to end. 

Returns 

Newly create step item 

Return type 

StepItem 

channel_names() 

Get list of channels added to the scenario. 

The function only returns channels that are active or have been manually added to 

the configuration. An active channel is used as a step item, log item, or used in a 

signal connection. 

Returns 

List of channel names. 

Return type 

List[str] 

get_channel(name) 

Get channel by name. 



www.keysight.com/find/labber          Page 151 

The function can be used to retrieve both active channels and unnamed channels 

that have not yet been added to the scenario. 

For unnamed channels, the name must be of the format “Instrument name - 

Quantity”. If the instrument/quantity combination is present in the configuration, a 

new channel will be created and automatically added to the scenario. 

Parameters 

name (str) – Name of channel. 

Returns 

Channel from scenario. 

Return type 

Channel 

get_config_as_dict() 

Create a dict containing the scenario configuration. 

Returns 

Configuration of scenario. 

Return type 

dict 

get_instrument(name) 

Get instrument by name. 

Parameters 

name (str) – Name of instrument to retrieve. 

Returns 

Instrument from scenario. 

Return type 

Instrument 

get_step(name) 



www.keysight.com/find/labber          Page 152 

Get step item by name. 

Parameters 

name (str) – Name of step item to retrieve. 

Returns 

Step item from scenario. 

Return type 

StepItem 

instrument_names() 

Get list of instruments present in scenario. 

Returns 

List of instrument names. 

Return type 

List[str] 

load(file_name) 

Load scenario from file. 

Parameters 

file_name (str) – File with scenario to load, eithers in .json or .labber format. 

log_names() 

Get list of channel names used as log items. 

Returns 

List of log names. 

Return type 

List[str] 

remove_channel(name) 

Remove channel from scenario. 



www.keysight.com/find/labber          Page 153 

Note that the function will only remove the channel - the corresponding 

instrument quantity will still be part of the scenario. 

Parameters 

name (str) – Name of channel to remove. 

remove_connection(channel) 

Remove signal connection scenario. 

Parameters 

channel (str or Channel) – Channel for which to remove connection, can be source 

or target. 

remove_instrument(name) 

Remove instrument from scenario. 

Parameters 

name (str) – Name of instrument to remove. 

remove_log(channel) 

Remove log channel from scenario. 

Parameters 

channel (str or Channel) – Log channel to remove. 

remove_step(name) 

Remove step item from scenario. 

Parameters 

name (str) – Name of step item to remove. 

save(file_name, save_as_json=False) 

Save Labber scenario to file, either as .labber or .json format. 

Parameters 

• file_name (str) – Path to output file. 



www.keysight.com/find/labber          Page 154 

• save_as_json (bool, optional) – If True, save to json if no extension is given, by 

default False 

Returns 

Final file name, with correct extension 

Return type 

str 

set_log_position(channel, index) 

Set position of log item. 

Parameters 

• channel (str or Channel) – Channel for log item to move 

• index (int) – New position for log item in log list 

 
set_step_position(channel, index) 

Set position of step item tied to channel. 

Parameters 

• channel (str or Channel or StepItem) – Channel for step item to move 

• index (int) – New position for step item in step list 

 
signal_connections() 

Get a list of signal connections active in scenario. 

Returns 

Signal connections, given as list of (source name, target name). 

Return type 

list of tuple 

step_names() 

Get list of channel names used as step items. 

Returns 

List of step names. 



www.keysight.com/find/labber          Page 155 

Return type 

List[str] 

A5.3. Scenario module 
This module contains functions and classes for generating Labber scenarios. 

A5.3.1. Enumerations 

classlabber.config.scenario.LimitAction 

Enumeration class for actions when channel exceeds limit. 

CONTINUE= 'Continue to next step item' 

Continue to next step item 

NOTHING= 'Nothing' 

Do nothing 

STOP= 'Stop, stay at current values' 

Stop, stay at current values 

STOP_RESET= 'Stop, go to init/final configuration' 

Stop, go to init/final configuration 

A5.3.2. Channel 

classlabber.config.scenario.Channel(**kwargs) 

Class representing a channel in a Labber scenario. 

Parameters 

• name (str) – Channel name. 

• instrument (str) – Instrument used for channel. 

• quantity (str) – Instrument quantity represented by channel. 

• unit_physical (str) – Physical unit of channel 

• unit_instrument (str) – Instrument unit of channel 

• gain (float) – Channel gain, where Instr. value = (Phys. value * Gain + Offset) * 

Amp 



www.keysight.com/find/labber          Page 156 

• offset (float) – Channel offset, where Instr. value = (Phys. value * Gain + Offset) * 

Amp 

• amp (float) – Channel amplification, where Instr. value = (Phys. value * Gain + 

Offset) * Amp 

• limit_high (float) – High limit for channel values 

• limit_low (float) – Low limit for channel values 

• limit_action (LimitAction) – Action to take when log channel value exceeds limits 

• signal_source (str) – Channel used as source in signal connections. 

 
get_config_as_dict() 

Return the configuration as a dict. 

Note that the class variable _parameter_names  define the list of attributes to include 

in the dict. 

Return type 

dict  

get_name() 

Get name of channel. 

If no name is given, the name will be created from the instrument in the form 

“Instrument - Quantity”. 

Returns 

Name of channel. 

Return type 

str 

set_signal_source(channel_source=None) 

Set channel used as source in signal connection for this channel. 

Parameters 

channel_source (str or Channel) – Channel to be set as source signal. If None, the 

current signal connection will be removed. 



www.keysight.com/find/labber          Page 157 

A5.3.3. Settings 

class labber.config.scenario.Settings(**kwargs) 

Class representing the settings of a Labber scenario. 

Parameters 

• send_in_parallel (bool) – Send values in parallel to multiple instruments. 

• log_parallel (bool) – If True, all channels are measured in parallel 

• arm_trig_mode (bool) – Turn arm/trig mode on/off 

• trig_channel (str) – Trig channel used in arm/trig mode 

• hardware_loop (bool) – Turn hardware loop mode on/off 

• limit_hardware_looping (bool) – Limit hardware looping to first step item. 

• n_items_hardware_loop (int) – Number of step items in hardware loop. 

• update_instruments_if_unchanged (bool) – Update instruments at start even if 

values are unchanged. 

• only_send_signal_if_updated (bool) – Only send signal if source instrument has 

been updated. 

• data_compression (int) – Value ranges from 0 (no compression) to 9 (max 

compression) 

• logger_mode (bool) – If True, object represents a Logger instead of Labber 

scenario 

A5.3.4. Optimizer 

class labber.config.scenario.Optimizer(**kwargs) 

Class representing optimizing settings of a Labber scenario. 

Parameters 

• method (str) – Algorithm used for optimization. 

• max_evaluations (int) – Maximum number of function 

evalutions/measurements before terminating. 

• minimization_function (str) – Function for optimizer to minimize. 

• target_value (float) – Absolute value of minimization function that will 

terminate optimization. 

• relative_tolerance (float) – Change in value between iterations that is 

acceptable for convergence. 

• method_settings (dict) – Specific settings for the various optimizer methods. 



www.keysight.com/find/labber          Page 158 

A5.3.5. Tags 

classlabber.config.scenario.Tags(**kwargs) 

Class representing tags of a Labber scenario. 

Parameters 

• project (str) – Project name associated with scenario. 

• user (str) – User name associated with scenario 

• tags (str, list of) – List of tags registered to the scenario. 

 

A5.4. Instrument module 
A5.4.1. Enumerations 

classlabber.config.instrument.Interface 

Enumeration class for defining the communication interface. 

ASRL= 'Serial' 

Serial - address refers to com port on computer 

GPIB= 'GPIB' 

GPIB - specify board number in advanced settings 

NONE= 'None' 

No instrument communcation, address is not used 

OTHER= 'Other' 

Other - address depends on implementation 

PXI= 'PXI' 

PXI - specify chassis number in advanced settings 

TCPIP= 'TCPIP' 

TCPIP - address is TCIPIP address 

USB= 'USB' 

USB - address is USB device name 



www.keysight.com/find/labber          Page 159 

VISA= 'VISA' 

VISA - address is full VISA resource name 

classlabber.config.instrument.Parity 

Enumeration class for defining parity for serial interfaces. 

EVEN_PARITY= 'Even parity' 

NO_PARITY= 'No parity' 

ODD_PARITY= 'Odd parity' 

classlabber.config.instrument.Startup 

Enumeration class for defining the startup operation. 

DO_NOTHING= 'Do nothing' 

Leave instrument configuration in its current state 

GET_CONFIG= 'Get config' 

Read configuration from instrument at start 

SET_CONFIG= 'Set config' 

Set instrument configuration at start 

classlabber.config.instrument.Termination 

Enumeration class for defining termination characters. 

AUTO= 'Auto' 

Use system default 

CR= 'CR' 

Carriage return 

CRLF= 'CR+LF' 

Carriage return + line feed 

LF= 'LF' 

Line feed 



www.keysight.com/find/labber          Page 160 

NONE= 'None' 

No termination 

A5.4.2. Communication 

classlabber.config.instrument.Communication(**kwargs) 

Class representing Labber communication settings. 

Parameters 

• name (str) – Instrument name, should be unique. 

• interface (Interface) – Interface type for communication. 

• address (str) – Instrument address, format depends on interface type. 

• startup (Startup) – Operation to perform at instrument startup. 

• server (str) – IP address of server at which instrument is located. 

• lock (bool) – If set, instrument is locked from other users during operation. 

• show_advanced (bool) – Show/hide advanced settings in the instrument 

configuration window 

• timeout (float) – Maximum time to wait for instrument response. 

• term_char (Termination) – Termination character used by the instrument. 

• send_end_on_write (bool) – Assert end during transfer of last byte of the buffer. 

• lock_visa (bool) – Prevent other programs from accessing the VISA resource. 

• suppress_end_on_read (bool) – Suppress end bit termination on read. 

• tcpip_specify_port (bool) – Use specific TCP port. 

• tcpip_port (int) – TCP port number. 

• tcpip_use_vicp (bool) – Use VICP instead of TCPIP protocol for 

Teledyne/Lecroy instruments. 

• baud_rate (float) – Communication speed for serial communication. 

• data_bits (float) – Number of data bits for serial communication. 

• stop_bits (float) – Number of stop bits for serial communication, can be 1, 1.5 or 

2. 

• parity (Parity) – Parity used for serial communication. 

• gpib_board (int) – The GPIB board number enumeration starts from zero. 

• gpib_go_to_local (bool) – Send GTL over GPIB after closing instrument. 

• pxi_chassis (int) – PXI chassis number. 

• use_32bit_mode (bool) – Run driver in 32-bit mode, for backwards 

compatibility. 



www.keysight.com/find/labber          Page 161 

A5.4.3. Instrument 

classlabber.config.instrument.Instrument(**kwargs) 

Class representing the configuration of a Labber instrument. 

Parameters 

• hardware (str) – Hardware name, must match instrument driver name. 

• model (str) – Instrument model, must match a model supported by the driver. 

• options (str, list of) – Available instrument options, must match options 

supported by driver. 

• com_config (Communication) – Communication/interface settings of 

instrument. 

• values (dict) – Instrument value defining the configuration. 

• version (str) – Version of instrument driver for which configuration is valid. 

 

A5.5. Step module 
A5.5.1. Enumerations 

classlabber.config.step.FinalAction 

Final action after finishing step 

GOTO_FIRST= 'Goto first point' 

Goto first point 

GOTO_VALUE= 'Goto value...' 

Goto specific value 

STAY_FINAL= 'Stay at final' 

Stay at final 

classlabber.config.step.RangeInterpolation 

Enumeration class for interpolation type of a step item. 

LINEAR= 'Linear' 

Linear interpoloation. 

LOG= 'Log' 



www.keysight.com/find/labber          Page 162 

Logarithmic interpoloation. 

LOGDECADE= 'Log, #/decade' 

Logarithmic interpoloation, fixed number of points/decade. 

RESONATOR= 'Lorentzian' 

Points are calculated to be equidistant in the complex plane. 

classlabber.config.step.RangeStep 

Enumeration class for step type for a step item. 

FIXEDSTEP= 'Fixed step' 

Set fixed step size. 

N_PTS= 'Fixed # of pts' 

Set fixed number of points. 

classlabber.config.step.RangeType 

Enumeration class for defining the range type of a step item. 

CENTERSPAN= 'Center - Span' 

Center and span values. 

SINGLE= 'Single' 

Single value 

STARTSTOP= 'Start - Stop' 

Start and stop values 

classlabber.config.step.StepUnit 

Define step units 

INSTRUMENT= 'Instrument' 

Define value in instrument units 

PHYSICAL= 'Physical' 



www.keysight.com/find/labber          Page 163 

Define value in physical units 

classlabber.config.step.SweepMode 

Define sweep options of step item 

BETWEEN_PTS= 'Between points' 

Sweep between fixed points 

CONTINUOUS= 'Continuous' 

Continuous sweeping 

NO_SWEEP= 'Off' 

No sweeping 

A5.5.2. RangeItem 

classlabber.config.step.RangeItem(init_value=None, **kwargs) 

Class representing a single Labber step range item. 

Parameters 

• range_type (RangeType) – Range type, can be SINGLE, STARTSTOP, or 

CENTERSPAN. 

• step_type (RangeStep) – Step length defintion, can be either N_PTS or 

FIXEDSTEP. 

• single (float) – Single point value. 

• start (float) – Start point of range. 

• stop (float) – End point of range. 

• center (float) – Center point of range. 

• span (float) – Span of range. 

• step (float) – Step length between points. 

• n_pts (int) – Number of points in the range. 

• interp (RangeInterpolation) – Interpolation type for range. 

• sweep_rate (float) – Sweep rate between points in the range. 

 
calc_values() 

Calculate values for step item. 



www.keysight.com/find/labber          Page 164 

Returns 

Values of step item 

Return type 

numpy array 

set_config_from_dict(config) 

Update config and change range type depending on given settings 

Parameters 

config (dict) – Dictionary with updated values. 

update_parameters() 

Update all parameters (start/end/center/width/etc) to be consistent. 

A5.5.3. RelationParameter 

classlabber.config.step.RelationParameter(for_step_values=False, **kwargs) 

Class representing a Labber step item relation parameter. 

Parameters 

• variable (str) – Parameter name. 

• channel_name (str) – Name of channel represented by parameter. 

• use_lookup (bool) – Turn lookup-table on/off for parameter. 

• lookup (LookUpTable) – Lookup-table for parameter. 

 

A5.5.4. OptimizerItem 

classlabber.config.step.OptimizerItem(**kwargs) 

Class representing a Labber step item optimizer config. 

Parameters 

• enabled (bool) – Enable/disable optimization for this step item. 

• start_value (float) – Start value for optimization process. 

• init_step_size (float) – First step size for optimizer. 

• min_value (float) – Lowest allowed value for optimizer parameter. 

• max_value (float) – Highest allowed value for optimizer parameter. 



www.keysight.com/find/labber          Page 165 

• precision (float) – Targer precision for optimizer parameter value. 

 

A5.5.5. StepItem 

classlabber.config.step.StepItem(channel=None, **kwargs) 

Class representing a Labber step config item. 

Parameters 

• channel_name (str) – Name of channel. 

• wait_after (float) – Time (in seconds) to wait after each point. 

• final_value (float) – Value to set after last point. Only relevant if after_last = 

GOTO_VALUE 

• show_advanced (bool) – Determines if advanced step config dialog is shown by 

default. 

• use_relations (bool) – Turns relation equation on/off. 

• equation (str) – Equation setting channel relations. 

• step_unit (StepUnit) – Units for step values. 

• after_last (FinalAction) – Final action after finishing last step. 

• sweep_mode (SweepMode) – Define sweep options of step item. 

• use_outside_sweep_rate (bool) – If True, outside sweep rate is set separately 

from rate between points. 

• sweep_rate_outside (float) – Sweep rate outside sweep range, ie before first 

and after last point. 

• alternate_direction (bool) – If True, every other step item is executed in reverse 

order. 

• range_items (RangeItem, list of) – List with range items defining step values. 

• relation_parameters (RelationParameter, list of) – List with parameters defining 

relations between channels. 

• optimizer_config (OptimizerItem) – Optimzier configuration for step item. 

 
calc_values() 

Calculate and return step values. 

Note that the output is the list of values from the range items before applying any 

relations. 



www.keysight.com/find/labber          Page 166 

Returns 

Step values, befor applying any channel relations. 

Return type 

np.ndarray 

update_from_values(values) 

Update step item with given values. 

Parameters 

values (numpy array or list or float) – New values for step item. 

A5.6. Lookup module 
A5.6.1. Enumerations 

classlabber.config.lookup.Interpolation 

Enumeration class for defining the interpolation type. 

CUBIC= 'Cubic' 

Cubick interpolation 

LINEAR= 'Linear' 

Linear interpolation 

NEAREST= 'Nearest' 

Nearest x-value 

QUADRATIC= 'Quadratic' 

Quadratic interpolation 

ZERO= 'Zero' 

Closest lower x-value 

A5.6.2. LookUpTable 

classlabber.config.lookup.LookUpTable(xdata=[], ydata=[], interp=<Interpolation.LINEAR: 

'Linear'>) 



www.keysight.com/find/labber          Page 167 

Class representing a Labber lookup-table. 

Parameters 

• interp (Interpolation) – Interpolation function, default is linear. 

• xdata (ndarray) – X-data for lookup table. 

• ydata (ndarray) – Y-data for lookup table. 

 
calc_values(x) 

Calculate values y(x) 

Property x_sorted 

Sorted x-data used by the interpolation function 

Return type 

ndarray  

property y_sorted 

Y-data sorted by x-values as used by the interpolation function. 

Return type 

ndarray  

 

 

 

 

 

 

 

https://labber.org/online-doc/api/Configuration.html#labber.config.lookup.Interpolation

