

IT7900P High Performance Regenerative Grid Simulator

Your Power Testing Solution

Adopting advanced SiC technology, the IT7900P series high-performance Regenerative grid simulator provides an all-in-one test solution that can be used not only as a grid simulator and four-quadrant power amplifier, but also as a four-quadrant regenerative AC/DC electronic load. The full four-quadrant operation, regenerative ability can feedback power to the grid, meet the needs of environmental protection, but also save a lot of electricity and heat dissipation costs. Compact, modular and efficient structure design allows the IT7900P up to 15kVA in 3U single unit, and its power can be extended to 960kVA after master-slave parallel connection. Colorful touch screen with intuitive GUI allows IT7900P to directly define different waveforms. The rich operation modes can meet the test requirement of single-phase, three-phase, reverse-phase and multi-channel. It provides high flexibility for testing and can be widely used in many fields such as PV, ESS and EV.

ESS

PCS energy storage converters, microgrids, home PV energy storage devices

004

PV

Photovoltaic inverters, power conditioning systems

EV

V2G, V2X, EVSE, vehicle type converters, electric vehicle power supply

Model	Voltage L-N	Current RMS	Power	Phase	Size
IT7905P-350-30U	350V	30A	5kVA	1Ф	3U
IT7906P-350-90	350V	90A	6kVA	1Φ or 3Φ	3U
IT7909P-350-90	350V	90A	9kVA	1Φ or 3Φ	3U
IT7912P-350-90	350V	90A	12kVA	1Φ or 3Φ	3U
IT7915P-350-90	350V	90A	15kVA	1Φ or 3Φ	3U
IT7930P-350-180	350V	180A	30kVA	1Φ or 3Φ	6U
IT7945P-350-270	350V	270A	45kVA	1Φ or 3Φ	15U
IT7960P-350-360	350V	360A	60kVA	1Φ or 3Φ	27U
IT7975P-350-450	350V	450A	75kVA	1Ф or 3Ф	27U

Power Electronics

Uninterruptible Power Supply System (UPS), AC power supply, inverter Generators, transformers, AC fans

Electronic Components

Circuit breakers, fuses, connectors

Scientific research, universities, laboratories, certification bodies

AC-DC power adapter testing, electromagnetic compatibility testing

Model	Voltage L-N	Current RMS	Power	Phase	Size
IT7990P-350-540	350V	540A	90kVA	1Ф or 3Ф	27U
IT79105P-350-630	350V	630A	105kVA	1Φ or 3Φ	27U
IT79120P-350-720	350V	720A	120kVA	1Ф or 3Ф	37U
IT79135P-350-810	350V	810A	135kVA	1Ф or 3Ф	37U
IT79150P-350-900	350V	900A	150kVA	1Ф or 3Ф	37U
IT79165P-350-990	350V	990A	165kVA	1Φ or 3Φ	37U

*Inverting and phase-locking function can achieve higher voltage test *Please contact ITECH for higher power needs. *The above specifications are subject to update without notice.

Parameter Features

- Adopt advanced SiC technology
- High power density, up to 6 kVA for 2U and 15 kVA for 3U
- Voltage can reach 350V L-N
- Master and slave equal flow, parallel machines up to 960kVA *1
- Highly efficient power regeneration
- Comprehensive working modes selectable: single-phase, three-phase, reversed phase and multi-channel, Voltage extension to 200% of rated voltage in inverted mode
- Support LIST/SWEEP/Surge&Sag three waveform modes
- Built-in rich waveform database

- Harmonic simulation and analysis function up to 50 times, built-in IEC61000-3-2/3-12 *2
- Can simulate arbitrary waveform output, support CSV file import waveform
- Phase angle 0-360° settable
- Touch screen design, simple UI interface
- Built-in USB/CAN/LAN /Digital IO interface,optional GPIB/analog & RS232 interface
- Full protection functions including automatic clearing, POVP, watchdog, etc.
- Current source mode
- Support CANopen*3、Modbus、LXI、SCPI communication

Source Features

- Regenerative grid simulator & full 4-Quadrant AC&DC power sources
- Frequency: 16-2400Hz *4
- Power Amplifier function for PHiL applications
- Professional islanding test mode, support R, L, C and active, reactive power settings*7
- Four output modes of AC/DC/AC+DC/DC+AC can be realized
- Multi-channel function, single unit can test 1-3 DUTs at the same time *5
- · Programmable output impedance, simulation of real-world impedance
- Harmonic/inter harmonic synthesis

Load Features

- Regenerative full 4-Quadrant AC&DC load
- Frequency: 16-500Hz
- AC mode supports CC/CP/CR/CS/CC+CR/CE multiple operating modes, and CE mode can simulate a variety of circuit topologies such as single-phase rectifier RLC and shunt RLC.
- DC mode supports 9 working modes such as CC/CR/CP/CV
- *1 For 1U/2U models, max.16 units can be parallel connected, for 3U models max. 64 units can be parallel connected.
- *2 Voltage/current harmonic analysis, voltage harmonic simulation in source mode, current harmonic simulation in load mode, fundamental wave≤60Hz
- *3 Stay tuned
- *4 In grid simulator and island simulation mode, 16~150Hz

- Frequency lock and phase lock function to achieve 6 phase& 12 phase power output
- Compliance tests incl. LVRT /Phase Jump/Frequency variation/harmonic injection
- Supported regulatory testing include IEC61000-4-11/4-13/4-14/4-28
- Provide rich trigger configuration, synchronous capture of the voltage waveform of the object to be measured, to achieve data acquisition and simulation functions
- Optional software can help complete the pre-compliance standards test of civil avionics/electrical ships interms of the multi-national safety regulations. *3
- · AC mode supports both rectified and non-rectified modes
- Adjustable crest factor: 1.414 ~ 5.0
- Support phase shift function in the range of -180°~180° *6
- The unit power factor1 function allows the current waveform to vary with the voltage waveform and the power factor is as close to 1 as possible
- Supporting unloading angle control, 0-359° adjustable

*5 Not available for single-phase models

- *6 After the rectification function is turned on, the setting range of the phase shift is restricted by the crest factor
- *7 Not available for multi-channel mode

01

All in one unit

IT7900P series integrates 3 products, a grid simulator(IT7900), an AC/DC power supply (IT7800) and a regenerative AC/DC load (IT8200).

MITECH

TRA

.....

0

02

High power regeneration efficiency

Whether it is used as a grid simulator or a load, in AC or DC mode, the IT7900P is high efficiently power regenerative. The energy generated by the DUT can be fed back to the local grid instead of dissipating in the form of heat, which is good for energy-saving and environment protection.

03

High power density

The IT7900P series can be both 1U/2U/3U stand-alone unit and 15U/27U/37U cabinets. It can meet the test requirements of 2k~165kVA. Among them, the size of the 3U/15kVA model is only 1/12 of the ordinary AC power supply on the market, which can be placed on your test bench, largely saves your room.

50.01 Hz

07 Vrms

00 Arms

04

Various test items

Sliding the touch screen of the IT7900P series is as simple as operating a mobile phone. The intuitive GUI not only allows multiple parameters displayed at the same time, but also multiple display ways are selectable, such as waveform graph, histogram, vector diagram and list.

Multiple protection and communication interfaces

IT7900P series has a variety of protection functions to ensure the safety of the test, including: over-current Rms protection, over current peak protection, over temperature protection, automatic clear protection, software watchdog and so on. IT7900P not only has built-in USB/CAN/LAN/digital IO interfaces, but also provides optional GPIB/analog & RS232.

Power extension by master-slave parallel connection

Through the master-slave parallel connection, the power of IT7900P can be extended up to 960kVA. It can be easily paralleled without disassembling and assembling the cabinet, and the multi-modules can synchronously share the current output. Not only will it retain all functions after paralleling, but there will be no precision sacrifice.

Outstanding Features

4-Quadrant output

IT7900P series is not only a full four-quadrant power grid simulator, but also a full four-quadrant AC/DC electronic load. It can operate in all four quadrants. The efficient energy regeneration function makes it good for testing the frequency change of grid-connected PV inverters, voltage transients and anti-islanding protection.

Full 4-Quadrant Power Amplifier

The IT7900P series regenerative grid simulator can be used as a power amplifier to complete power hardware in the loop (PHIL) applications for microgrids, energy storage and new energy vehicles. The digital I/O or a standard suite of analog signal can be input via an external analog interface (optional) and then amplified without distortion to a real power waveshape with an external analog response time of less than 200us.

Professional Anti-islanding Test Mode

Anti-islanding protection is one of the must-test items for grid-connected inverters. IT7900P series has built-in anti-islanding protection test function, which allows testers to set the active power of resistor R, the reactive power of inductor Q and capacitor C, and also set resistor R, inductor Q, and capacitor C to simulate the inter-network resonance and test the anti-island protection function of grid-connected inverter. IT7900P is land test mode can simplify the test process, improve test efficiency, and complete the test of the anti-islanding protection function in the process of grid-connected inverter research and development test, factory inspection, etc.

Pre-compliance regulation test

According to industry standards, IT7900P series has built-in regulation standards such as IEC 61000-4-11/4-13/4-14/4-28, IEC61000-3-2/3-12. These regulations can be recalled directly. You can also customize the test items required by regulations too.

30 		В	C	2				
220.00	V	Standa	rds II	EC 61 0	00-4-1	1		Stop
0.07	A	Category	Volta	ige dips/C	lass 2	Ref.		1/3
50.00	Hz	220.00	Vines	50 Hz		X		111
sv= 50.00 P=0.000KW CF= 2.12		Lend%	Plant"	Cpde 11.5	2 loonated 0.01	Repeat 1	Beby S	Selected Yes,
PF- 0.01 Ithe- 2.53%			60.0				60.0	
Dont= 0.06% Ipeak= 0.864		70	90.0	25.0	10.0		160.01	

IT7900P AC electronic load can enable the 'Rectified' function in AC mode, so that the load works in the first and third quadrants to ensure that the voltage and current flow always in the same direction. At this time, full wave, positive half wave, or negative half wave can be freely selected.

full wave

positive half wave

negative half wave

CF 1.414-5.0

The crest factor indicates the extreme peaks of the waveform. For applications that require a pure sine wave, it is desirable to have a CF value of the load current waveform of 1.414 or as close as possible. However, in practical applications, the peak shape of the current waveform of the load may become very sharp and its CF is often higher than 1.414. At this time, the starting point of the sine wave starts to shift from 0 degrees to the positive degree. So you need to correct the waveform. The Crest Factor of the IT8200 can be adjusted from 1.414 to 5.0, and it also allows to set the phase shift angle from -90 °~90 °, correct the resulting amplitude, and keep the RMS unchanged. This enables more accurate simulation of field test conditions to ensure the reliability of the unit under test (UUT).

CC phase leading / lagging

Multiple operation modes

AC,DC,AC+DC,DC+AC working mode

IT7900P series can be used as a "full four-quadrant AC/DC power supply" and provides four output modes: AC, DC, AC+DC, and DC+AC. Not only provide pure AC/DC output, use AC+DC and DC+AC output modes to realize "AC output superimposed DC bias" and simulate "DC output waveform with ripple" to meet the complex application requirements of engineers. In DC mode, the rated power in 100% AC mode can be achieved.

07 IT7900P High Performance Regenerative Grid Simulator

Single-phase, three-phase, reverse phase, multi-channel operation modes

IT7900P series has very flexible operation mode that single-phase, three-phase/ reverse phase /multi-channel output mode can be selected. Combined with the powerful programming function, it can simulate three-phase unbalance , phase loss and phase sequence reverse connection and so on. In the reverse phase mode, users can obtain a single-phase output voltage of up to 700V, and the power remains at 2/3 of the original. Multi-channel mode allows users to test 1-3 independent DUT at the same time. One device for multiple purposes, better equipment utilization, and reduces test costs for enterprises.

IT790()P Operation Mo	de
CH1 (1-Phase)	CH2 (1-Phase)	CH3 (1-Phase)
	1-Phase	
Revers	e Phase	
	3-Phase	

Frequency lock/phase lock function, multi-phase output or high voltage output

IT7900P series can realize frequency locking and phase locking between power supplies through optical fiber, simulating 6-phase and 12-phase power output. It can not only keep the set value updated synchronously, but also has multi-phase protection to meet the complex AC test requirements. This also helps to realize high-voltage tests up to 1400Vrms 3 phase. Via the digital IO interface, it can also be used for simple multi-phase system applications.

phase lock, 2400Hz

Measurement Functions

Data acquisition and simulation

IT7900P series integrates an advanced data acquisition system based on digital signal processor, and provides measurement and waveform analysis functions of a digital oscilloscope, a power meter and a digital multimeter. Its current measurement accuracy is as high as 0.1%+0.2%FS, and the voltage measurement accuracy is as high as 0.1%+0.1%FS. 6 oscilloscope curves can be displayed at the same time, which not only saves the cost, but also saves the time for wiring connection. The trigger configuration of IT7900P can synchronously capture the voltage waveform of the DUT, and realize the functions of data acquisition and simulation. The user can import the collected abnormal voltage data of the power grid into the IT7900P to reproduce the power grid status, set the repetition times, offset and other parameters of the waveform.

Data record

Thanks to the function of large data recording, IT7900P series is capable of recording up to 7 hours of continuous data at short intervals (fastest: 100ms). And it's easy to view the complete curve generating from the start to the end of the test. There are six curves that can be displayed at the same time at most. In addition, you can slide the vernier calipers on the screen to check the exact data at a particular point in the current trend curves. It is useful for analyzing errors during test for a long time or inflection points during loading, etc. Besides, you can export the test data for further analysis by front panel USB interface.

Harmonic analysis

Harmonic analysis functions include both voltage and current harmonic measurement. In the harmonic mode, the voltage and current total harmonic distortion (THD) and the phase difference test of the harmonic to the fundamental wave can be realized. In addition, you can make multiple harmonic measurements. The test results are displayed in a list, histogram or vector diagram, easy to check.

Current Source Mode

The IT7900P series has a current source mode. It can operate in various modes such as single-phase, reverse phase, AC and AC+DC. Its maximum voltage can reach 700V, which can meet various high voltage and high current applications. Meanwhile, the Normal and LIST functions can cope with various types of conventional and dynamic testing requirements. The rich waveform editing and customization functions can also help you simulate complex current waveforms.

Current source mode can provide stable current output so that you can simulate various loads, such as laser drivers, LEDs, motors, etc. With a maximum frequency of 2400Hz, it can quickly do frequency sweep, charge/discharge, AC impedance and other related tests on various types of batteries. While improving test efficiency and accuracy, the IT7900P also optimizes the system design while ensuring safety.

System					The second se	0			0		VIEDDORT;
Current	General	Communication	1/0	Information						A DA LANS	
Device operation	i mode				Secondary and					4012 (Bell 6018	- 143 H H - 167 / 475
Curren	it Source				- Halland	ana	11111111111111111111111111111111111111	WWWWWWWW	www.		highlight
Phase mo yolt St	NIFEC								100000000000000000000000000000000000000	in the second	in the second second
Lead					5		111111111111111111111111111111111111111	11111111111111			1111111111111111111
Output co Curren	t Source										
ACUC											
Output impedan	68				150.0 V	× 0.	10.0 A N	200+1	500k/37/89 IM (d)	13.0 A	
Status Off		0.000 mc	0.000	H .	● 均方槽 21770月	100 V 40.2 A	中口(回 (9)3 (1)1	載小田 1911 1844	最大田 100 40.1	5349 7.72	1211 252
Off meda		_			●新車	52,95162	未发现周期	51768	52.84	0.000	14,25:10

AC+DC, AC20A+ DC30A, 50Hz; limit current 10A, enter current loop

Powerful waveform editing function

Built-in various type of distorted waveforms

In addition to sine waveform, IT7900P series provides various standard AC waveforms, such as triangular wave, sawtooth wave, square wave, trapezoidal wave and clipped sine wave. These waves can be easily recall from the menu and displayed in the LCD touch screen. Moreover, in combination with sequence programming function, users can realize multiple waveform continuous output, to cope with complex power line disturbance test.

User-defined waveform function

IT7900P series provides user-defined waveform editing function that allows users to simulate the effects of real AC or DC power supply systems on DUT's in different test environments by importing real waveform data into the device, it supports up to 1024 points of data import.

Simulate power grid and low voltage ride through (LVRT) testing

Low voltage ride-through refers to the ability of the power generation system to continue to operate without disconnecting from the grid within a certain range of voltage drop when the grid fault or disturbance causes a voltage drop, and even provides a reactive power to help the system recover the voltage. You can edit the test parameters under LVRT condition. With the fast response, it can fully meet the test requirements of LVRT. At the same time, the IT7900P series has the function of arbitrary waveform. With the LIST function, it can edit and simulate various grid disturbance waveforms through the panel or software, such as instantaneous power failure, surge and voltage rise and fall.

slow rise and fall

instantaneous power failure

Harmonic and inter-harmonic simulation

With high-speed DSP technology, IT7900P series is capable of simulating harmonic, inter-harmonic and harmonic synthesis. By setting the amplitude and phase, it can simulate up to 50th harmonics(fundamental frequency is 50Hz or 60Hz), creating a periodic distortion waveform. It also has built-in 30 types harmonic distortion waveforms for quick recall. Harmonic test is one of the important tests for EMC immunity, and single-phase harmonics, three-phase harmonics and three-phase harmonic unbalance output can be realized, also meet IEC regulations test requirements.

LIST/SWEEP/Surge & Sag modes

IT7900P series supports NORMAL,LIST and SWEEP mode. Each mode can work with Surge&Sag function.

- In LIST mode, a single file supports up to 200 steps, and the waveform type, voltage, frequency, slope and start-stop phase angle can be selected under each step. When the output voltage or frequency jumps, a trigger signal can be generated to synchronize external devices, which is especially suitable for large-scale test platforms with strict logic control and fast response for inter-device linkage.
- SWEEP is suitable for AC mode, which can test the efficiency of switching power supply, grab the voltage and frequency of the maximum power point, and change the setting parameters in a step-by-step way.
- In NORMAL/LIST/SWEEP modes, Surge&Sag can work with each of them. The surge and sag can be controlled by trigger or cycle, and the starting angle of the drop can be set, and waveform smoothing, symmetrical and asymmetrical waveform operations are supported. Waveforms can be quickly created to replicate waveform distortions or transient status such as spikes, dropouts, or any other anomalies that can be seen as a single cycle.

Intuitive software interface

IT7900Pseries provides free PC software PV7900P with an intuitive GUI. Meanwhile, it allows remote control, even the ATE models without display screen can be programmed, communicated and monitored.

Optional Accessories

ltem	Model	Specification	Description	
	IT-E510-15U *1	15U unit, grey	800mm X 550mm X907.64mm	
	IT-E511-15U *1	15U unit, black	800mm X 550mm X907.64mm	
	IT-E510-27U *1	27U unit, grey	800mm X 600mmX 1441.41mm	
	IT-E511-27U ^{*1}	27U unit, black	800mm X 600mmX 1441.41mm	
Darallal	IT-E510-37U ^{*1}	37U unit, grey	800mm X 600mm X 1885.91mm	
r ai allei bit	IT-E511-37U ^{*1}	37U unit, black	800mm X 600mm X 1885.91mm	
κιι	IT-E168	fiber kit for parallel	for single unit	
	IT-E169	fiber kit for parallel	for cabinet	
	IT-E258	power cord for 3U unit, 5m, US standard	AC input power cord	
	IT-E258-15U	power cord for 15U cabinet, 5m, US standard	AC input power cord	
Other	IT-E258-27U	power cord for 27U cabinet, 5m, US standard	AC input power cord	
accessorie	IT-E258-37U	power cord for 37U cabinet, 5m, US standard	AC input power cord	
000000000000000000000000000000000000000	IT-E176	GPIB		
	IT-E177	RS232 & analog		

IT-E511-27U

*1 There is standard cabinet for models >30kVA

		IT	7915P-350-90			
Input parameters	(connect to grid)					
	Wiring connection	3 phase 3w	ire + ground(PE)			
	Line voltage	RMS (200V~220V)±10%	^1 (38UV ~ 48UV) ±1U%			
AC Input	Apparent nower	GIVIN	< 33.7A < 17 AkVA			
	Frequency		45~65Hz			
	Power factor	typ	0.98			
Output parameter	s (connect to EUT) (co	onnect to grid)				
	Output voltage	VLN *2	0~350V			
		VLL	U~6U6V (3phase) / 0~/00V (reverse)			
	Output current	Crest Factor *3	90A (Tphase) / 30A (Sphase/mutichannel/Teverse)			
	output current	Peak	270A (1phase) / 90A (3phase/multichannel/reverse.)			
		Per Phase/Per Channel	5kVA			
	Output power	Max. Power	10kVA (reverse phase) / 15kVA (1phase/3phase/multichannel)			
	Voltage setting					
	Range	0 \sim 350V (1phase/3phase/multichannel) / 0 \sim	700V (reverse)			
	Resolution	0.01V				
	Accuracy	<0.1%+0.1% F.S. (16HZ~500HZ) / <0.1%+(0	0.02Vda			
	Current Limit setting	тур	0.02 vac			
	Range	RMS	90A (1phase) / 30A (3phase/multichannel/reverse)			
AC Output	Resolution	0.01A				
	Accuracy	<0.1% + 0.2% F.S. (16Hz~150Hz) / <0.2% +	0.3% F.S. (150.01Hz~500Hz) / <0.3%+(0.6%*kHz) F.S (500.01Hz~2.4kHz)			
	Frequency					
	Range	16~500Hz (Low *4) / 16~2.4k (High *4)				
	Resolution	0.01Hz				
	Accuracy	0.01% (16Hz~500Hz) / 0.1% (500.01Hz~2.4 50/60Hz	KHZ) up to 50 orders			
	Phase	30/00112				
	Range	0~360°				
	Resolution	0.01°				
	Voltage setting					
	Kange -495~495Vdc (1phase/multichannel) / -990~990Vdc (reverse)					
	Accuracy <0.1%+0.1% F.S					
	Current setting					
DC Output	Range	-30 \sim 30Adc (multichannel/reverse) / -90 \sim 90/	Adc (1phase)			
Do output	Resolution 0.01A					
	Accuracy < 0.1% + 0.2% F.S.					
	Phase power	Per Channel	5kW			
	Max. power (reversephase	Max. Power (reverse phase)	10kW			
	Total power	Max. Power (1phase/multichannel)	15kW			
	Line regulation	<0.05% F.S.				
Voltage stability	THD*6	< 0.05% + 0.	103% + (0.1% + kHz) F.S.(500.01 Hz ~ 2.4 kHz)			
	Voltage ripple	RMS	< 0.4V			
	Dynamic response*7	typ	200us			
Programmable impedance	R Range	$0 \sim 10$ (3pnase/multichannel) / $0 \sim 0.3330$ (1p $0 \sim 1000$ uH (3phase/multichannel) / $0 \sim 3333$	nase) / 0~2Ω(reverse) 33μH (1nhase) / 0~2000μH (reverse)			
Impedance	P Range	$0 \sim 5 \text{kW}$ (3phase) / $0 \sim 15 \text{kW}$ (1phase) / $0 \sim 10$	DkW (reverse)			
	QL Range	$0\sim$ 5kVar (3phase) / $0\sim$ 15kVar (1phase) / $0\sim$	10kVar (reverse)			
RLC	QC Range	$0 \sim 5 \text{kVar}$ (3phase) / $0 \sim 15 \text{kVar}$ (1phase) / $0 \sim$	10kVar (reverse)			
NEO	K Kange	$1 \sim 1000\Omega$ (3pnase) / 0.333 \sim 333.333 Ω (1pna 1 \sim 5000mH (3pnase) / 0.333 \sim 1666 667mH	ise) / 2~2000Ω (reverse) (1nhase) / 2~10000mH (reverse)			
	C Range	$0.001 \sim 5$ mF (3phase) / $0.003 \sim 15$ mF (1phase	e) / 0.001 ~ 2.5mF (reverse)			
Voltage Slew Rate, Typical	-	$\geq 2 \text{ V/}\mu\text{s}$ with full-scale programmed voltage st	ep			
Output Isolation	(alaatzania laad	550Vac				
output parameters		VLN	30~350V			
	Input voltage	VLL	51.96 \sim 606V (3phase) / 60 \sim 700V (reverse)			
	Input frequency	16~500Hz	004 (1-h) (004 (0-h ()h)			
	Input current	KMS Crest Factor *8	Suc (Thuse) / Suc (Sphase/multichannel/reverse)			
	pac our one	Peak	270A (1phase) / 90A (3phase/multichannel/reverse)			
	Input power	Per Phase	5kVA (3phase)			
	CC Modo	Max. Power	10kVA (reverse phase) / 15kVA (1phase/3phase/multichannel)			
AC Mode	Current Range	BMS	904 (1nhase) / 304 (3nhase/reverse)			
	Resolution	0.01A	איר (אומפר) איר (אומפראבאבופר איר איר איר איר איר איר איר איר איר אי			
	Accuracy*9	$<$ 0.1% + 0.2% F.S. (DC,16Hz \sim 150Hz) / $<$ 0.2	% + 0.3% F.S.(150.1Hz ~ 500Hz *10)			
	CP Mode					
	Range	Max. Power	15kW (1phase/3phase) / 10kW (reverse phase)			
	Resolution		JKW (JUIIdSE)			
	Accuracy	$< 0.4\% + 0.4\%$ F S (DC 16Hz \sim 500Hz)				

	CS Mode								
	Range	Max. Power	15kVA (1phase/3phase) / 10kVA (reverse phase)						
	- 5-	Per Phase	5kVA (3nhase)						
	Perclution								
	CD Made	< 0.4% +0.4% F.S. (16HZ~500HZ)							
	CRIMOUE								
	Range).334 \sim 388.88 Ω (1phase) / 1.002 \sim 1166.6 Ω (3phase/reverse phase)							
	Resolution	0.001Ω							
	Accuracy *11	0.4%+0.4%F.S.	.4%+0.4%F.S.						
	Circuit Emulation(CE)	arallel ric							
	R Range	$0.334 \sim 388.88 \Omega$ (1phase) / $1.002 \sim 1166.6 \Omega$ (3)	phase/reverse phase)						
	L Range	~ 2000mH (1phase) / 3 ~ 2000mH (reverse phase) / 3 ~ 2000mH (3phase)							
	C Range	0.001 ~ 9900uF (1phase) / 0.001 ~ 3300uF (re	verse phase) / 0.001 ~ 3300uF (3phase)						
	Rc Range	0.334~388.88Ω(1phase) / 1.002~1166.6Ω(3phase/reverse phase)							
	RL Range	0.334~388.88Ω(1phase) / 1.002~1166.6Ω(3	phase/reverse phase)						
AC Mode	IL Range	$0 \sim 272.7A$ (1phase) / $0 \sim 90.90A$ (reverse pha	se) / 0 ~ 90.90A (3phase)						
	Max neak current	272 7A (1phase) / 90 9A (reverse phase) / 90 9	A (3nhase)						
	Circuit Emulation(CE)	-Rectifier single phase rlc							
	R Range	$0.334 \sim 388.880(1 \text{ phase}) / 1.002 \sim 1166.60(3)$	nhase/reverse nhase)						
		0.1 ~ 2000mH (1phase) / 0.3 ~ 2000mH (rever	s_{0} phase) / 0.3 ~ 2000mH (2phase)						
	C Dange	0.001 a 0000 (1phase) / 0.001 a 2200 (reven	verse phase) / 0.01 - 2000 E (2phase)						
		$0.001 \approx 3900 \text{ (lplase)} / 0.001 \approx 3300 \text{ (le}$	verse phase) / 0.001 ~ 35000F (spilase)						
	KS Kallye	$0 \sim 300.000(10103e) / 0 \sim 1100.00(30103e) / 0 \sim 400.024) / (roword)$	verse pridse)						
	V cap Range	$0 \sim 499.924$ (1pilase) / $0 \sim 499.924$ (1everse)	EV (2nhoon)						
	Volode Range	$0 \sim 5V$ (Tphase) / $0 \sim 5V$ (reverse phase) / $0 \sim$	SV (sphase)						
	Max peak current	2/2./A (1phase) / 90.9A (reverse phase) / 90.9	JA (3phase)						
	Phase Range								
	Range	Rectified Mode *12	-82.8°~+82.8°						
	D	-90°~+90° (Current Source Mode: +90.01°~+18	30° & -90.01°~-180°)						
	Resolution	0.01°							
	Accuracy	1% F.S.							
	CF setting								
	Range	1.414 ~ 5.0							
	Resolution	0.001							
	voltage range	30 ~ 499V							
DO Mada	current range	0 ~ 90A (1phase)							
DC Mode	current rise time	20005							
	working mode	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C	C+CR, CC+CV+CP+CR						
Measurement para	working mode ameter (grid simulator	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode)	C+CR, CC+CV+CP+CR						
Measurement para	working mode ameter (grid simulator Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V	C+CR, CC+CV+CP+CR						
Measurement para Voltage RMS	working mode ameter (grid simulator Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.1%	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para	working mode ameter (grid simulator Resolution Accuracy Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V <0.1%+0.1% F.S. (DC,16Hz ~ 500Hz) / <0.1% 0.01A	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) $0.01V$ $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / <0.1\% $0.01A$ $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz ~ 2.4kHz) % + 0.3% F.S. (150.01Hz ~ 500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz ~ 2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / <0.1\% 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $< 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / <0.4\% +	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz) (1.2%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Recolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / <0.1\% 0.01A $<0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / <0.4\% + 0.001kW	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz) (1.2%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 0.1A $< 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $< 0.4\%$ + 0.001kW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max.	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) $0.01V < 0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ $0.01A < 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 $0.1A < 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $< 0.4\% + 0.001kW < 0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$	KC+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ + 0.001kW $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode)	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Accuracy Max. ameter (electronic loa Range	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ + 0.001kW $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) $0.01V < 0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ $0.1A < 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 $0.1A < 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $< 0.4\%$ + 0.001kW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$ 0.01V	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim$ 350Vrms 0.01V $<0.1\%$ F.S. (DC, 16Hz \sim 500Hz)	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$ 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) $0 \sim 90A$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ $<0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$ 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) $0 \sim 90A$ $0 \sim 01\Delta$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ $<0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$ 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) $0 \sim 90A$ 0.01A	*C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\% + 0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 0.1A $< 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $< 0.4\% +$ 0.001kW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$ 50/60Hz d mode) 0 \sim 350Vrms 0.01V $< 0.1\% + 0.1\%$ F.S. (DC,16Hz \sim 500Hz) 0 \sim 90A 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2	RC+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\% + 0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 0.1A $< 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $< 0.4\% +$ 0.001kW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$ 0/60Hz d mode) 0 \sim 350Vrms 0.01V $< 0.1\% + 0.1\%$ F.S. (DC,16Hz \sim 500Hz) 0 \sim 90A 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 0 \sim 270A 1A	RC+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.1A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ + 0.001kW $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$ 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) $0 \sim 90A$ 0.01A $<0.1\%$ + 0.2% F.S. (DC,16Hz \sim 150Hz) / <0.2 $0 \sim 270A$ 0.1A	RC+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\% + 0.1\%$ F.S. (DC,16Hz ~ 500 Hz) / $< 0.1\%$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz ~ 150 Hz) / < 0.2 0.1A $< 0.4\% + 0.6\%$ F.S. (16Hz ~ 500 Hz) / $< 0.4\% + 0.001$ KW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz ~ 500 Hz) / $< 0.4\% + 0.001$ KW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz ~ 500 Hz) / $< 0.4\% + 0.001$ KW $< 0.1\% + 0.1\%$ F.S. (DC,16Hz ~ 500 Hz) / $< 0.4\% + 0.01$ V $< 0.1\% + 0.2\%$ F.S. (DC,16Hz ~ 500 Hz) / < 0.2 $0 \sim 90A$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz ~ 150 Hz) / < 0.2 $0 \sim 270A$ 0.1A $< 0.3\% + 0.6\%$ F.S. (16Hz ~ 500 Hz)	RC+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ 0.01kW $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) 0 \sim 350Vrms 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / <0.2 0 \sim 90A 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0 \sim 270A 0.1A $<0.3\%+0.6\%$ F.S. (16Hz \sim 500Hz) 0 \sim 15kW 0 \sim 0.01W	RC+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para Voltage RMS Current RMS Peak current Active power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. Accuracy Max. Ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.1A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) $0 \sim 350Vrms$ 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / <0.2 $0 \sim 90A$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 $0 \sim 270A$ 0.1A $<0.3\%+0.6\%$ F.S. (16Hz \sim 500Hz) $0 \sim 15kW$ 0.01kW	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current Active power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Accuracy Max. Ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.1\%$ 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 0.1A $<0.4\%+0.6\%$ F.S. (16Hz \sim 500Hz) / $<0.4\%$ 0.01kW $<0.4\%+0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $<0.4\%$ 50/60Hz d mode) 0 \sim 350Vrms 0.01V $<0.1\%+0.1\%$ F.S. (DC,16Hz \sim 500Hz) 0 \sim 90A 0.01A $<0.1\%+0.2\%$ F.S. (DC,16Hz \sim 150Hz) / <0.2 $0\sim$ 270A 0.1A $<0.3\%+0.6\%$ F.S. (16Hz \sim 500Hz) $0\sim$ 15kW 0.001kW <0.4% F.S.	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current Active power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$\begin{array}{l} \text{CC, CV, CR, CP, \ CC+CV, \ CR+CV, \ CP+CV, \ C}\\ \hline \text{mode} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.1\%$ \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim150 \ \text{Hz}$) / <0.2 \\ 0.1A \\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) / $<0.4\%$ \\ 0.01 \ \text{kW} \\ < 0.4\% + 0.6\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.4\%$ \\ 50/60 \ \text{Hz} \\ \hline \text{d mode} \\ 0 \sim350 \ \text{Vrms} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) \\ 0 \sim90 \ \text{A} \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) \\ \hline 0 \sim90 \ \text{A} \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / <0.2 \\ 0 \sim270 \ \text{A} \\ 0.1A \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) \\ \hline 0 \sim15 \ \text{kW} \\ 0.001 \ \text{kW} \\ < 0.4\% \ \text{H}.4\% \ \text{F.S. 0} \\ \hline 0 \sim15 \ \text{kVAR} \\ \hline \end{array}$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~2.4kHz) (1.2%*kHz) F.S (500.01Hz~2.4kHz) 6 +< (0.8%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para Voltage RMS Current RMS Peak current Active power Reactive power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$\begin{array}{l} \text{CC, CV, CR, CP, \ CC+CV, \ CR+CV, \ CP+CV, \ C}\\ \hline \text{mode} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.1\%$ \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim150 \ \text{Hz}$) / <0.2 \\ 0.1A \\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) / $<0.4\%$ \\ 0.01 \ \text{kW} \\ < 0.4\% + 0.6\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.4\%$ \\ 50/60 \ \text{Hz} \\ \hline \text{d mode} \\ 0 \sim350 \ \text{vms} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) \\ 0 $<0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) \\ \hline \text{o} $<0.1\% \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) \\ \hline \text{o} $<270 \ \text{A}$ \\ 0.1A \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) / <0.2 \\ \hline \text{o} $<270 \ \text{A}$ \\ 0.1A \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) \\ \hline \text{o} $<15 \ \text{kW}$ \\ 0.001 \ \text{kW}$ \\ < 0.4\% \ \text{H}.4\% \ \text{F.S. 0} \\ \hline \text{o} $<15 \ \text{kVAR}$ \\ 0.001 \ \text{kVAR}$ \\ \hline \end{array}$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~2.4kHz) (1.2%*kHz) F.S (500.01Hz~2.4kHz) % + < (0.8%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current Active power Reactive power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$\begin{array}{l} \text{CC, CV, CR, CP, \ CC+CV, \ CR+CV, \ CP+CV, \ C}\\ \hline \text{mode} \\ 0.01V \\ < 0.1\% + 0.1\% \ F.S. \ (DC, 16Hz \sim 500Hz) \ / \ < 0.1\% \\ 0.01A \\ < 0.1\% + 0.2\% \ F.S. \ (DC, 16Hz \sim 150Hz) \ / \ < 0.2 \\ 0.1A \\ < 0.4\% + 0.6\% \ F.S. \ (16Hz \sim 500Hz) \ / \ < 0.4\% + 0.001kW \\ < 0.4\% + 0.6\% \ F.S. \ (16Hz \sim 500Hz) \ / \ < 0.4\% + 0.001kW \\ < 0.4\% + 0.4\% \ F.S. \ (DC, 16Hz \sim 500Hz) \ / \ < 0.4\% + 0.001kW \\ < 0.1\% + 0.1\% \ F.S. \ (DC, 16Hz \sim 500Hz) \ / \ < 0.4\% \\ 0 & 0 & 350Vrms \\ 0.01V \\ < 0.1\% + 0.2\% \ F.S. \ (DC, 16Hz \sim 500Hz) \ 0 & - 90A \\ 0.01A \\ < 0.1\% + 0.2\% \ F.S. \ (DC, 16Hz \sim 150Hz) \ / \ < 0.2 \\ 0 & - 270A \\ 0.1A \\ < 0.3\% + 0.6\% \ F.S. \ (16Hz \sim 500Hz) \\ 0 & - 15kW \\ 0.001kW \\ < 0.4\% + 0.4\% \ F.S. \\ 0 & - 15kVAR \\ 0.001kVAR \\ < 0.4\% + 0.4\% \ F.S. \end{array}$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement par Voltage RMS Current RMS Peak current Active power Reactive power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$\begin{array}{l} \text{CC, CV, CR, CP, \ CC+CV, \ CR+CV, \ CP+CV, \ C}\\ \hline \text{mode} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz } \sim 500\text{Hz}) \ / \ < 0.1\% \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz } \sim 150\text{Hz}) \ / \ < 0.2 \\ 0.1A \\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz } \sim 500\text{Hz}) \ / \ < 0.4\% + 0.001\text{kW} \\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz } \sim 500\text{Hz}) \ / \ < 0.4\% + 0.001\text{kW} \\ < 0.4\% + 0.4\% \ \text{F.S. (DC, 16Hz } \sim 500\text{Hz}) \ / \ < 0.4\% \\ 0.01V \\ < 0.1\% + 0.4\% \ \text{F.S. (DC, 16Hz } \sim 500\text{Hz}) \ / \ < 0.4\% \\ 0.01K \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz } \sim 500\text{Hz}) \ / \ < 0.2 \\ 0 & \sim 350V\text{rms} \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz } \sim 500\text{Hz}) \ / \ < 0.2 \\ 0 & \sim 90A \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz } \sim 150\text{Hz}) \ / \ < 0.2 \\ 0 & \sim 270A \\ 0.1A \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz } \sim 500\text{Hz}) \\ 0 & \sim 15\text{kW} \\ 0.001\text{kW} \\ < 0.4\% + 0.4\% \ \text{F.S.} \\ 0 & \sim 15\text{kVAR} \\ 0.001\text{kVAR} \\ < 0.4\% + 0.4\% \ \text{F.S.} \\ 0 & \sim 15\text{kVA} \end{array}$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement pare Voltage RMS Current RMS Peak current Active power Reactive power Apparent power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V $< 0.1\% + 0.1\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.1\%$ 0.01A $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 0.1A $< 0.4\% + 0.6\%$ F.S. (16Hz \sim 500Hz) / $< 0.4\%$ + 0.001kW $< 0.4\% + 0.4\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$ 50/60Hz d mode) 0 \sim 350Vrms 0.01V $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 500Hz) / $< 0.4\%$ 50/60Hz d mode) 0 \sim 350Vrms 0.01V $< 0.1\% + 0.2\%$ F.S. (DC,16Hz \sim 150Hz) / < 0.2 0 \sim 90A 0.1A $< 0.3\% + 0.6\%$ F.S. (16Hz \sim 500Hz) 0 \sim 15kW 0.001kW < 0.4% + 0.4% F.S. 0 \sim 15kVAR 0.001kVAR < 0.4% + 0.4% F.S. 0 \sim 15kVAR 0.001kVAR	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / < 0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para Voltage RMS Current RMS Peak current Active power Reactive power Apparent power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$\begin{array}{l} \text{CC, CV, CR, CP, \ CC+CV, \ CR+CV, \ CP+CV, \ C}\\ \hline \text{mode} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500\text{Hz}$) / $<0.1\%$}\\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim150\text{Hz}$) / <0.2}\\ 0.1A \\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz \sim500\text{Hz}$) / $<0.4\%$}\\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz \sim500\text{Hz}$) / $<0.4\%$}\\ < 0.4\% + 0.4\% \ \text{F.S. (DC, 16Hz \sim500\text{Hz}$) / $<0.4\%$}\\ 50/60\text{Hz} \\ & 0 \\ 0 \\ < 0.350V\text{rms} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500\text{Hz}$) / <0.2}\\ 0 \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim500\text{Hz}$) / <0.2}\\ 0 \\ < 0.1\% \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim500\text{Hz}$) / <0.2}\\ 0 \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz \sim500\text{Hz}$) / <0.2}\\ 0 \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz \sim500\text{Hz}$) / <0.2}\\ 0 \\ < 0.3\% + 0.6\% \ \text{F.S. (16Hz \sim500\text{Hz}$) \\ 0 \\ < 0.4\% + 0.4\% \ \text{F.S. 0} \\ 0 \\ < 0.15\text{KVA} \\ 0.001\text{KVAR} \\ < 0.4\% + 0.4\% \ \text{F.S. 0} \\ 0 \\ < 0.4\% + 0.4\% \ \text{F.S. 0} \\ 0 \\ < 0.4\% + 0.4\% \ \text{F.S. 0} \\ 0 \\ < 0.4\% + 0.4\% \ \text{F.S. 0} \\ \hline \end{array}$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~200Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para Voltage RMS Current RMS Peak current Active power Reactive power Apparent power	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$\begin{array}{l} \text{CC, CV, CR, CP, \ CC+CV, \ CR+CV, \ CP+CV, \ C}\\ \hline \text{mode} \\ 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.1\%$}\\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim150 \ \text{Hz}$) / <0.2}\\ 0.1A \\ < 0.4\% + 0.6\% \ \text{F.S. (DC, 16Hz \sim150 \ \text{Hz}$) / $<0.4\%$}\\ < 0.4\% + 0.6\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) / $<0.4\%$}\\ < 0.4\% + 0.4\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.4\%$}\\ < 0.4\% + 0.4\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.4\%$}\\ < 0.4\% + 0.4\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / $<0.4\%$}\\ = 0.01V \\ < 0.1\% + 0.1\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / <0.2}\\ 0 \\ \sim 90A \\ 0.01A \\ < 0.1\% + 0.2\% \ \text{F.S. (DC, 16Hz \sim500 \ \text{Hz}$) / <0.2}\\ 0 \\ \sim 15W \\ 0.001 \ \text{KW} \\ < 0.4\% + 0.4\% \ \text{F.S. (16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) / <0.2}\\ 0 \\ \sim 15 \ \text{KVA} \\ 0.001 \ \text{KVA} \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.001 \ \text{KVA} \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.001 \ \text{KVA} \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% + 0.4\% \ \text{F.S. (0C, 16Hz \sim500 \ \text{Hz}$) \\ < 0.4\% \ \text{Hz}$) \\ <$	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz ~ 2.4kHz) % + 0.3% F.S. (150.01Hz ~ 500Hz) / < 0.3% + (0.6%*kHz) F.S (500.01Hz ~ 2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para Voltage RMS Current RMS Peak current Active power Reactive power Apparent power CF measurement	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.1% 0.01A <0.1%+0.2% F.S. (DC,16Hz ~150Hz) / <0.2 0.1A <0.4%+0.6% F.S. (16Hz ~500Hz) / <0.4% 50/60Hz d mode) 0 ~ 350Vrms 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.4% 50/60Hz d mode) 0 ~ 350Vrms 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.2 0 ~90A 0.01A <0.1%+0.2% F.S. (DC,16Hz ~150Hz) / <0.2 0 ~270A 0.1A <0.3%+0.6% F.S. (16Hz ~500Hz) 0 ~15kW 0.001kW <0.4%+0.4% F.S. 0 ~15kVAR 0.001kVA <0.4%+0.4% F.S. 0 ~15kVA 0.001kVA <0.4%+0.4% F.S. 1 ~5 0.01	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz ~ 2.4kHz) % + 0.3% F.S. (150.01Hz ~ 500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz ~ 2.4kHz)						
Measurement para Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement para Voltage RMS Current RMS Peak current Active power Reactive power Apparent power CF measurement	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.1% 0.01A <0.1%+0.2% F.S. (DC,16Hz ~150Hz) / <0.2 0.1A <0.4%+0.6% F.S. (16Hz ~500Hz) / <0.4% 50/60Hz d mode) 0 ~ 350Vrms 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.4% 50/60Hz d mode) 0 ~ 350Vrms 0.01V <0.1%+0.1% F.S. (DC,16Hz ~500Hz) / <0.2 0 ~90A 0.01A <0.1%+0.2% F.S. (DC,16Hz ~150Hz) / <0.2 0 ~270A 0.1A <0.3%+0.6% F.S. (16Hz ~500Hz) 0 ~15kW 0.001kW <0.4%+0.4% F.S. 0 ~15kVAR 0.001kVA <0.4%+0.4% F.S. 0 ~15kVAR 0.001kVA <0.4%+0.4% F.S. 1 ~5 0.01 0.1~1	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement pare Voltage RMS Current RMS Peak current Active power Reactive power Apparent power CF measurement PF	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Range Resolution Range Resolution Range	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V < 0.1% + 0.1% F.S. (DC,16Hz ~ 500Hz) / < 0.1% 0.01A < 0.1% + 0.2% F.S. (DC,16Hz ~ 150Hz) / < 0.2 0.1A < 0.4% + 0.6% F.S. (16Hz ~ 500Hz) / < 0.4% + 0.001kW < 0.4% + 0.4% F.S. (DC,16Hz ~ 500Hz) / < 0.4% 50/60Hz d mode) 0 ~ 350Vrms 0.01V < 0.1% + 0.2% F.S. (DC,16Hz ~ 500Hz) / < 0.2 0 ~ 90A 0.01A < 0.1% + 0.2% F.S. (DC,16Hz ~ 150Hz) / < 0.2 0 ~ 270A 0.1A < 0.3% + 0.6% F.S. (16Hz ~ 500Hz) 0 ~ 15kW 0.001kW < 0.4% + 0.4% F.S. 0 ~ 15kVAR 0.001kVAR < 0.4% + 0.4% F.S. 0 ~ 15kVA 0.001kVA < 0.4% + 0.4% F.S. 1 ~ 5 0.01 0.1~1 0.01	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~500Hz) / <0.3% + (0.6%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement Measurement pare Voltage RMS Current RMS Peak current Active power Reactive power Apparent power CF measurement PF measurement	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V < 0.1% + 0.1% F.S. (DC,16Hz ~ 500Hz) / <0.1% 0.01A < 0.1% + 0.2% F.S. (DC,16Hz ~ 150Hz) / <0.2 0.1A < 0.4% + 0.6% F.S. (16Hz ~ 500Hz) / <0.4% + 0.001kW < 0.4% + 0.4% F.S. (DC,16Hz ~ 500Hz) / <0.4% d mode) 0 ~ 350Vrms 0.01V < 0.1% + 0.2% F.S. (DC,16Hz ~ 500Hz) / <0.2 0 ~ 90A 0.01A < 0.1% + 0.2% F.S. (DC,16Hz ~ 150Hz) / <0.2 0 ~ 270A 0.1A < 0.3% + 0.6% F.S. (16Hz ~ 500Hz) 0 ~ 15kW 0.001kW < 0.4% + 0.4% F.S. 0 ~ 15kW 0.001kWA < 0.4% + 0.4% F.S. 0 ~ 15kVAR 0.001kVA < 0.4% + 0.4% F.S. 1 ~ 5 0.01 0.1 ~ 1 0.01 1\% F.S.	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~2.4kHz) (1.2%*kHz) F.S (500.01Hz~2.4kHz) 6+<(0.8%*kHz) F.S (500.01Hz~2.4kHz)						
Measurement pare Voltage RMS Current RMS Peak current Output power Harmonic measurement pare Voltage RMS Current RMS Peak current Active power Reactive power Apparent power CF measurement PF Measurement	working mode ameter (grid simulator Resolution Accuracy Resolution Accuracy Resolution Accuracy Resolution Accuracy Max. ameter (electronic loa Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	CC, CV, CR, CP, CC+CV, CR+CV, CP+CV, C mode) 0.01V < 0.1% + 0.1% F.S. (DC,16Hz ~ 500Hz) / <0.1% 0.01A < 0.1% + 0.2% F.S. (DC,16Hz ~ 150Hz) / <0.2 0.1A < 0.4% + 0.6% F.S. (16Hz ~ 500Hz) / <0.4% + 0.001kW < 0.4% + 0.4% F.S. (DC,16Hz ~ 500Hz) / <0.4% 50/60Hz d mode) 0 ~ 350Vrms 0.01V < 0.1% + 0.2% F.S. (DC,16Hz ~ 500Hz) / <0.2 0 ~ 90A 0.01A < 0.1% + 0.2% F.S. (DC,16Hz ~ 150Hz) / <0.2 0 ~ 270A 0.1A < 0.1% + 0.2% F.S. (16Hz ~ 500Hz) 0 ~ 15kW 0.001kW < 0.4% + 0.4% F.S. 0 ~ 15kVA 0.001kVA < 0.4% + 0.4% F.S. 0 ~ 15kVA 0.001kVA < 0.4% + 0.4% F.S. 1 ~ 5 0.01 0.1 ~ 1 0.1 ~ 1 0.01 1\% F.S. 50(60)	C+CR, CC+CV+CP+CR +(0.2%*kHz) F.S (500.01Hz~2.4kHz) % + 0.3% F.S. (150.01Hz~2.4kHz) (1.2%*kHz) F.S (500.01Hz~2.4kHz) (1.2%*kHz) F.S (500.1Hz~2.4kHz) (1.2%*kHz) F.S (500.1Hz~2.4kHz)						

Regenerative		
Max. Regenerative power		15kVA
THD		< 5%
Others		
Efficiency	typ	88%
dimension		483.00mm (W) * 151.3mm (H) * 700mm(D) (841.6mm cover and holder included)
Weight		42kg
Working temperature		0 C - 50 C
Programming response time		2ms
Remote Sense Compensation Voltage		20V
Communication interfac	e	Built-in USB/CAN/LAN/Digital IO interface, optional GPIB / Analog&RS232

*1 ($200 \sim 220$) ±10%, 3 phase AC input, power is 60% of the rated.

*2 Depending on the frequency, the output voltage will decrease. The rated voltage can be output below 1.4kHz, the maximum output voltage at 2kHz is 250.76Vrms, and the maximum output voltage

at 2.4kHz is 208.97Vrms.

*3 When the output frequency is below 50Hz/60Hz, and the peak current is not exceeded, the maximum CF is 6; under the condition of full current and full power, the maximum CF is *4 When

loopSpeed Low is low it can better complied DUT's characteristics; When LoopSpeed is High, the dynamic response time is faster.

*5 30kW and above models need to use the sense remote measurement mode for testing.

*6 Test condition: pure resistive load, under full power condition

*7 When the input frequency is below 50Hz/60Hz, and the peak current is not exceeded, the maximum CF is 5; under the condition of full current and full power, the maximum CF is 3. *8 For frequency <150Hz, the minimum current for accuracy test is 1%F.S., for frequency>150Hz, the minimum current for accuracy test is 3%F.S.

*9 When LoopSpeed is Low, it is more adaptable to the load; when LoopSpeed is Fast, the dynamic response is faster; when the frequency is high, please use Fast mode.

*10 Test frequency <150Hz, which meets this specification.

*11 Under condition: I >10%F.S., F<150Hz

All the above parameters are subject to change without prior notice from ITECH.

This information is subject to change without notice.For more information, please contact ITECH.

Taipei

Add: No.918, Zhongzheng Rd., Zhonghe Dist., New Taipei City 235, Taiwan Web: www.itechate.com TEL: +886-3-6684333 E-mail: info@itechate.com

Factory I

Add: No.108, XiShanqiao Nanlu, Nanjing city, 210039, China TEL: +86-25-52415098 Web: www.itechate.com

Factory II

Add: No.150, Yaonanlu, Meishan Cun, Nanjing city, 210039, China TEL: +86-25-52415099 Web: www.itechate.com

ITECH LinkedIn