

ASR-2000 Series

Compact Programmable AC/DC Power Supply

FEATURES

- Output Rating: AC 0 ~ 350 Vrms, DC $0 \sim \pm 500$ V
- Output Frequency up to 999.9 Hz
- DC Output (100\% of Rated Power)
- Output Capacity: 500VA/1000VA
- Measurement Items: Vrms, Vavg, Vpeak, Irms, IpkH, Iavg, Ipeak, P, S, Q, PF, CF
- Voltage and Current Harmonic Analysis (THDv, THDi)
- Customized Phase Angle for Output On/Off
- Remote Sensing Capability
- OVP, OCP, OPP, OTP, AC Fail Detection and Fan Fail Alarm
- Interface: USB, LAN (std.); RS-232+GPIB (opt)
- Built-in External Control I/O and External Signal Input
- Built-in Output Relay Control and Memory Function (up to 10 sets)
- Sequence and Simulation Function (up to 10 sets)
- Support Arbitrary Waveform Function and Built-in Web Server

GயIMSTEK
Simply Reliable

The ASR-2000 series, an AC+DC power source aiming for system integration or desktop applications, provides both rated power output for AC output and rated power output for DC output. Ten ASR-2000 output modes are available, including 1) AC power output mode (AC-INT Mode), 2) DC power output mode (DC-INT Mode), 3) AC/DC power output mode (AC+DC-INT Mode), 4) External AC signal source mode (AC-EXT Mode), 5) External AC/DC signal source mode (AC+DC-EXT Mode), 6) External AC signal superimposition mode (AC-ADD Mode), 7) External AC/DC signal superimposition mode (AC+DC-ADD Mode), 8) External AC signal synchronization mode (AC-SYNC Mode), 9) External AC/DC signal synchronization mode (AC+DC-SYNC Mode), 10) External DC voltage control of AC output mode (AC-VCA).

The ASR-2000 series provides users with waveform output capabilities to meet the test requirements of different electronic component development, automotive electrical devices and home appliance, including 1) Sequence mode generates waveform fallings, surges, sags, changes and other abnormal power line conditions; 2) Arbitrary waveform function allows users to store/upload user-defined waveforms; and 3) Simulate mode simulates power outage, voltage rise, voltage fall, and frequency variations. When the ASR-2000 series power source outputs, it can also measure Vrms, Vavg, Vpeak, Irms, lavg, Ipeak, IpkH, P, S, Q, PF, CF, 100th-order Voltage Harmonic and Current Harmonic. In addition, the Remote sense function ensures accurate voltage output. The Customized Phase Angle for Output On/Off function can set the starting angle and ending angle of the voltage output according to the test requirements. V-Limit, Ipeak-Limit, F-Limit, OVP, OCP, OPP function settings can protect the DUT during the measurement process. In addition to OTP, OCP, and OPP protection, the ASR-2000 series also incorporates the Fan fail alarm function and AC fail alarm function.

The front panel of the ASR-2050/2100 provides a universal socket or a European socket, which allows users to plug and use so as to save wiring time. The ASR-2050R/2100R is 3 U height and $1 / 2$ Rack width design, which is compatible with ATS assembly. The ASR-2000 series supports I/O interface and is equipped with USB, LAN, External I/O and optional RS-232C and GPIB.

PANEL INTRODUCTION

AC Output for ASR-2050/ASR-2050R

DC Output for ASR-2050/ASR-2050R

AC Output for ASR-2100/ASR-2100R

DC Output for ASR-2100/ASR-2100R
The ASR-2000 series is an AC+DC power source that provides rated power output not only at the AC output, but also at the DC output. The operation areas are shown in diagrams.

Model Name	Power Rating	Max. Output Current	Max. Output Voltage
ASR-2050	500 VA	$5 / 2.5 \mathrm{~A}$	$350 \mathrm{Vrms} / 500 \mathrm{Vdc}$
ASR-2100	1000 VA	$10 / 5 \mathrm{~A}$	$350 \mathrm{Vrms} / 500 \mathrm{Vdc}$
ASR-2050R	500 VA	$5 / 2.5 \mathrm{~A}$	$350 \mathrm{Vrms} / 500 \mathrm{Vdc}$
ASR-2100R	1000 VA	$10 / 5 \mathrm{~A}$	$350 \mathrm{Vrms} / 500 \mathrm{Vdc}$

B. MEASUREMENT ITEMS FOR ASR-2000 SERIES

RMS Meas Display

AVG Meas Display

Peak Meas Display

ON	ON	ON	ON	00	2\%	
Harr	Ham	Harn	Harmonic Voltage Measure		TMDV $=42.2 \%$	Simple
312h	2ith	12th	18	179.9 Vrms	50.7\%	
32th	22th	12th	2nd	0.0 vms	0.0x	
33th	23th	13:h	3rd	59.8 vrms	30.2\%	
34th	24th	14.th	4th	0.0 Vmm	0.0\%	
35th	2sth	15th	5th	35.8 vmm	18.0\%	
35th	26th	16th	Geh	0.0 vmm	0.0\%	
37\%	27th	17\%h	7th	25.5 vmms	12.9\%	
38eh	20th	185h	8th	0.0 vms	0.0\%	
39th	29th	19\%h	Sth	19.8 vms	10.0\%	
40 th	30th	20th	10th	0.0 Vmm	0.0x	Down

Voltage Harmonic
The ASR-2000 series provides users with measurement capabilities including Vrms, Vavg, Vpeak, Irms, lavg, Ipeak, IpkH, P, S, Q, PF, CF, 100th-order Voltage Harmonic and Current Harmonic. During the power output, the measurement

SEQUENCE MODE AND APPLICATIONS

Momentary Drop in Supply Voltage

Reset Behavior at Voltage Drop

Starting Profile Waveform

Instantaneous Power Failure

There are 10 sets of Sequence mode and each set has 0~999 steps. The time setting range of each step is 0.0001 ~ 999.9999 seconds. Users can combine multiple sets of steps to generate
the desired waveforms, including waveform fallings, surges, sags, changes and other abnormal power line conditions to meet the needs of the test application.

Simulate Mode can quickly simulate different transient waveforms, such as power outage, voltage rise, voltage fall, etc.,

E. T, IPK HOLD \& IPK, HOLD FUNCTIONS

T, Ipk Measurement
T, Ipk Hold is used to set the delay time after the output (1ms ~ $60,000 \mathrm{~ms}$) to capture the Ipeak value and keep the maximum value. The update only functions when the measurement value is greater than the original value. The T, Ipk Hold delay time setting can be used to measure surge current at the power on process of the DUT.

Ipk Hold can be used to measure the transient surge current of the DUT at power on without using an oscilloscope and a current probe.
for engineers to evaluate the impact of transient phenomena on the DUT. Ex: Capacitance durability test.

F. SLEW RATE MODE

Time Mode
Slope Mode

The ASR-2000 series can set the Slew Rate Mode to determine the rise time of the voltage according to the test requirements of the DUT. Slew Rate Mode provides "Time" and "Slope" modes. When setting "Time" mode, ASR-2000 can increase output to 10~90\% of the set voltage within $100 \mu \mathrm{~s}$; and when selecting "Slope" mode, ASR-2000 increases output voltage by a fixed rising slope of $1.5 \mathrm{~V} / \mu \mathrm{s}$ until reaching the set voltage value.

In addition, if users decide to self-define the rise time of the output voltage, users can flexibly set the rise time of the ASR-2000 series voltage by editing the Sequence mode.

G. REMOTE SENSE FUNCTION

For high current output applications, the voltage drop caused by large current passing through the load cables will affect the measurement results. The ASR-2000 series provides the remote sense function that can sense the voltage drop of the DUT to the ASR-2000 series and the DUT will be compensated by the ASR-2000 series. The maximum voltage that the remote sense function can compensate is 5% of the output voltage.

SPECIFICATIONS					
		ASR-2050/ASR-2050R	ASR-2100/ASR-2100R		
INPUT RATING (AC)					
NORMINAL INPUT VOLTAGE		100 Vac to 240 Vac	100 Vac to 240 Vac		
		90 Vac to 264 Vac	90 Vac to 264 Vac		
PHASE		Single phase, Two-wire	Single phase, Two-wire		
INPUT FREQUENCY RANGE		47 Hz to 63 Hz	47 Hz to 63 Hz		
MAX. POWER CONSUMPTION		800 VA or less	1500 VA or less		
POWER FACTOR ${ }^{\text {¹ }}$	100Vac	0.95 (typ.)	0.95 (typ.)		
	200 Vac	0.90 (typ.)	0.90 (typ.)		
MAX. INPUT CURRENT	100 Vac	8 A	15 A		
	200 Vac	4 A	7.5 A		
*1. For an output voltage of $100 \mathrm{~V} / 200 \mathrm{~V}(100 \mathrm{~V} / 200 \mathrm{~V}$ range), maximum current, and a load power factor of 1 .					
AC MODE OUTPUT RATINGS (AC rms)					
VOLTAGE	Setting Range ${ }^{\text {al }}$	0.0 V to $175.0 \mathrm{~V} / 0.0 \mathrm{~V}$ to 350.0 V			
	Setting Resolution	0.17			
	Accuracy ${ }^{\text {z2 }}$	$\pm(0.5 \%$ of set $+0.6 \mathrm{~V} / 1.2 \mathrm{~V})$			
OUTPUT PHASE		Single phase, Two-wire			
MAXIMUM CURRENT ${ }^{\text {3/3 }}$	100 V	5 A	10 A		
	200 V	2.5 A	5 A		
MAXIMUM PEAK CURRENT ${ }^{* 4}$	100 V	20 A	40 A		
	200 V	10 A	20 A		
POWER CAPACITY		500 VA	1000 VA		
FREQUENCY	Setting Range	AC Mode: 40.00 Hz to $999.9 \mathrm{~Hz}, \mathrm{AC}+\mathrm{DC}$ Mode: 1.00 Hz to 999.9 Hz			
	Setting Resolution				
	Accuracy	For 45 Hz to $65 \mathrm{~Hz}: 0.01 \%$ of set, For 40 Hz to $999.9 \mathrm{~Hz}: 0.02 \%$ of set			
	Stability ${ }^{\text {² }}$	$\pm 0.005 \%$			
OUTPUT ON PHASE DC OFFSET ${ }^{\text {'6 }}$		0.0° to 359.9° variable (setting resolution 0.1°)			
*1. $100 \mathrm{~V} / 200 \mathrm{~V}$ range					
*2. For an output voltage of 17.5 V to $175 \mathrm{~V} / 35 \mathrm{~V}$ to 350 V , sine wave, an output frequency of 45 Hz to 65 Hz , no load, DC voltage setting $0 \mathrm{~V}\left(\mathrm{AC}+\mathrm{DC}\right.$ mode) and $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ *3. For an output voltage of 1 V to $100 \mathrm{~V} / 2 \mathrm{~V}$ to 200 V , Limited by the power capacity when the output voltage is 100 V to $175 \mathrm{~V} / 200 \mathrm{~V}$ to 350 V .					
*4. With respect to the capacitor-input rectifying load. Limited by the maximum current.					
$* 5$. For 45 Hz to 65 Hz , the rated output voltage, no load and the resistance load for the maximum current, and the operating temperature.$* 6$. In the case of the AC mode and output voltage setting to 0 V .					
OUTPUT RATING FOR DC MODE					
VOLTAGE	Setting Range ${ }^{* /}$	-250 V to $+250 \mathrm{~V} /-500 \mathrm{~V}$ to +500 V0.1 V			
	Setting Resolution				
	Accuracy ${ }^{\text {² }}$	$\pm(\mid 0.5 \%$ of set $\mid+0.6 \mathrm{~V} / 1.2 \mathrm{~V})$			
MAXIMUM CURRENT ${ }^{\text {³ }}$	100 V	5 A	10 A		
	200 V	2.5 A	5 A		
MAXIMUM PEAK CURRENT* ${ }^{*}$	100 V	20 A	40 A		
POWER CAPACITY	200 V	10 A	20 A		
POWER CAPACITY		500 W	1000 W		
*1. $100 \mathrm{~V} / 200 \mathrm{~V}$ range *2. For an output voltage of -250 V to $-25 \mathrm{~V},+25 \mathrm{~V}$ to $+250 \mathrm{~V} /-500 \mathrm{~V}$ to $-50 \mathrm{~V},+50 \mathrm{~V}$ to +500 V , no load, AC volatge setting 0 V ($\mathrm{AC}+\mathrm{DC}$ mode) and $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ *3. For an output voltage of 1.4 V to $100 \mathrm{~V} / 2.8 \mathrm{~V}$ to 200 V , Limited by the power capacity when the output voltage is 100 V to $250 \mathrm{~V} / 200 \mathrm{~V}$ to 500 V . *4. Within 5 ms , Limited by the maximum current.					
OUTPUT VOLTAGE STABILITY					
LINE REGULATION ${ }^{*}$ LOAD REGULATION ${ }^{* 2}$ RIPPLE NOISE ${ }^{* 3}$		```\pm0.2% or less 0.15% @45-65Hz; 0.5% @DC, all other frequencies (0 to 100%, via output terminal) 0.7 Vrms / 1.4 Vrms (TYP)```			
*1. Power source input voltage is $100 \mathrm{~V}, 120 \mathrm{~V}$, or 230 V , no load, rated output. *2. For an output voltage of 75 V to $175 \mathrm{~V} / 150 \mathrm{~V}$ to 350 V , a load power factor of 1 , stepwise change from an output current of 0 A to maximum current(or its reverse), using the output terminal on the rear panel. *3. For 5 Hz to 1 MHz components in DC mode using the output terminal on the rear panel.					
OUTPUT VOLTAGE WAVEFORM DISTORTION RATIO, OUTPUT VOLTAGE RESPONSE TIME, EFFICIENCY					
OUTPUT VOLTAGE WAVEFORM DISTORTION RATIO* OUTPUT VOLTAGE RESPONSE TIME" EFFICIENC ${ }^{* 3}$		0.5% or less 100 us (TYP) 70% or more			
*1. At an output voltage of 50 V to $175 \mathrm{~V} / 100 \mathrm{~V}$ to 350 V , a load power factor of 1 , and in AC and $\mathrm{AC}+\mathrm{DC}$ mode. *2. For an output voltage of $100 \mathrm{~V} / 200 \mathrm{~V}$, a load power factor of 1 , with respect to stepwise change from an output current of 0 A to the maximum current (or its reverse); $10 \% \sim 90 \%$ of output voltage *3. For AC mode, at an output voltage of $100 \mathrm{~V} / 200 \mathrm{~V}$, maximum current, and load power factor of 1 and sine wave only.					
MEASURED VALUE DISPLAY					
VOLTAGE $\begin{gathered}\text { RMS, AVG Value }{ }^{\text {a }} \\ \text { PEAK Value }\end{gathered}$	Resolution	0.1 V			
	Accuracy ${ }^{\text {² }}$	For 45 Hz to 65 Hz and $\mathrm{DC}: \pm(0.5 \%$ of reading $+0.3 \mathrm{~V} / 0.6 \mathrm{~V})$ For 40 Hz to $999.9 \mathrm{~Hz}: \pm(0.7 \%$ of reading $+0.9 \mathrm{~V} / 1.8 \mathrm{~V})$ 0.1 V			
	Resolution				
	Accuracy	For 45 Hz to 65 Hz and DC: $\pm(\mid 2 \%$ of reading $\mid+1 \mathrm{~V} / 2 \mathrm{~V})$			
CURRENT RMS, AVG Value	Resolution	0.01 A	0.01 A		
	Accuracy ${ }^{\text {¹3 }}$	For 45 Hz to 65 Hz and $\mathrm{DC}: \pm(0.5 \%$ of reading $+0.02 \mathrm{~A} / 0.02 \mathrm{~A}$) For 40 Hz to $999.9 \mathrm{~Hz}: \pm(0.7 \%$ of reading $+0.04 \mathrm{~A} / 0.04 \mathrm{~A})$	For 45 Hz to 65 Hz and $\mathrm{DC}: \pm(0.5 \%$ of reading+ $0.04 \mathrm{~A} / 0.02 \mathrm{~A})$; For 40 Hz to $999.9 \mathrm{~Hz}: \pm(0.7 \%$ of reading $+0.08 \mathrm{~A} / 0.04 \mathrm{~A})$		
PEAK Value	Resolution	0.01 A	0.01 A		
	Accuracy ${ }^{\text {² }}$	For 45 Hz to 65 Hz and $\mathrm{DC}: \pm(\mid 2 \%$ of reading\|+0.2 A/0.1 A)	For 45 Hz to 65 Hz and DC: $\pm(\mid 2 \%$ of reading\|+0.2 A/0.1 A)		
POWER $\begin{array}{ll}\text { Active (W) } \\ & \text { Apparent (VA) } \\ & \text { Reactive (VAR) }\end{array}$	Resolution	$0.1 / 1 \mathrm{~W}$	$0.1 / 1 \mathrm{~W}$		
	Accuracy ${ }^{\text {² }}$	$\pm(2 \%$ of reading $+0.5 \mathrm{~W})$	$\pm(2 \%$ of reading $+1 \mathrm{~W})$		
	Resolution	0.1 / 1 VA	0.1 / 1 VA		
	Accuracy ${ }^{5556}$	$\pm(2 \%$ of reading + 0.5 VA)	$\pm(2 \% \text { of reading }+1 \text { VA })$		
	Resolution	0.1 / 1 VAR	0.1 / 1 VAR		
	Accuracy ${ }^{\text {4587 }}$	$\pm(2 \%$ of reading $+0.5 \mathrm{VAR})$	$\pm(2 \%$ of reading + 1 VAR)		
LOAD POWER FACTOR	Range	0.000 to 1.000	0.000 to 1.000		
	Resolution	0.001	0.001		
LOAD CREST FACTOR	Range	0.00 to 50.00	0.00 to 50.00		
	Resolution	0.01			

Specifications subject to change without notice. ASR-2000GD2BH

ORDERING INFORMATION

ASR-2050 500VA Programmable AC/DC Power Source

OPTIONAL ACCESSORIES

Opt01 : RS-232+GPIB Communication Functions(Factory installed) Opt02 : European Output Outlet only for ASR-2000(Factory installed) GET-003 Extended Universal Power Socket(ASR-2000R only) GET-004 Extended European Power Socket(ASR-2000R only) GRA-439-E Rack Mount Kit (EIA) ASR-001 Air inlet filter GRA-439-J Rack Mount Kit (JIS) ASR-002 External three phase control unit GTL-232 RS-232C Cable, approx. 2M
GTL-258 GPIB Cable, approx. 2M, including 25 pins Micro-D connector

FREE DOWNLOAD

USB Driver
Note: GET-003/GET-004 are not $(\in$ approved.

ASR-002

* Functions of ASR-Series are limited when ASR-Series applied to ASR-002 1. No DC Output(100% of Rated Power)

2. Measurement Items:only current(A) , power(W) and PF for each phase 3. No voltage and current Harmonic Analysis (THDv, THDi) 4. No Remote Sensing Capability
3. No Arbitrary Waveform Function
4. No Sequence and Simulation Function(up to 10 sets)
5. Interface: only support USB
6. Not supported Built-in External Control I/O . No memory Function(up to 10 sets)

Global Headquarters

GOOD WILL INSTRUMENT CO., LTD.
T + 886-2-2268-0389 F + 886-2-2268-0639
China Subsidiary
GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.
T+86-512-6661-7177 F +86-512-6661-7277
Malaysia Subsidiary
GOOD WILL INSTRUMENT (SEA) SDN. BHD.
T+604-6111122 F +604-6115225
Europe Subsidiary
GOOD WILL INSTRUMENT EURO B.V.
T+31(0)40-2557790 F+31(0)40-2541194

U.S.A. Subsidiary

INSTEK AMERICA CORP
T +1-909-399-3535 F +1-909-399-0819
Japan Subsidiary
TEXIO TECHNOLOGY CORPORATION.
T + 81-45-620-2305 F +81-45-534-7181
Korea Subsidiary
GOOD WILL INSTRUMENT KOREA CO., LTD.
T + 82-2-3439-2205 F + 82-2-3439-2207
India Subsidiary
GW INSTEK INDIA LLP.
T +91-80-6811-0600 F +91-80-6811-0626

Simply Reliable

Website

Facebook

